Simulated and Observed Surface Energy Fluxes and Resulting Playa Breezes during the MATERHORN Field Campaigns

Simulated and Observed Surface Energy Fluxes and Resulting Playa Breezes during the MATERHORN... AbstractWeather Research and Forecasting (WRF) Model simulations of the autumn 2012 and spring 2013 Mountain Terrain Atmospheric Modeling and Observations Program (MATERHORN) field campaigns are validated against observations of components of the surface energy balance (SEB) collected over contrasting desert-shrub and playa land surfaces of the Great Salt Lake Desert in northwestern Utah. Over the desert shrub, a large underprediction of sensible heat flux and an overprediction of ground heat flux occurred during the autumn campaign when the model-analyzed soil moisture was considerably higher than the measured soil moisture. Simulations that incorporate in situ measurements of soil moisture into the land surface analyses and use a modified parameterization for soil thermal conductivity greatly reduce these errors over the desert shrub but exacerbate the overprediction of latent heat flux over the playa. The Noah land surface model coupled to WRF does not capture the many unusual playa land surface processes, and simulations that incorporate satellite-derived albedo and reduce the saturation vapor pressure over the playa only marginally improve the forecasts of the SEB components. Nevertheless, the forecast of the 2-m temperature difference between the playa and desert shrub improves, which increases the strength of the daytime off-playa breeze. The stronger off-playa breeze, however, does not substantially reduce the mean absolute errors in overall 10-m wind speed and direction. This work highlights some deficiencies of the Noah land surface model over two common arid land surfaces and demonstrates the importance of accurate land surface analyses over a dryland region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Simulated and Observed Surface Energy Fluxes and Resulting Playa Breezes during the MATERHORN Field Campaigns

Loading next page...
 
/lp/ams/simulated-and-observed-surface-energy-fluxes-and-resulting-playa-ciY3X6swCt
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0161.1
Publisher site
See Article on Publisher Site

Abstract

AbstractWeather Research and Forecasting (WRF) Model simulations of the autumn 2012 and spring 2013 Mountain Terrain Atmospheric Modeling and Observations Program (MATERHORN) field campaigns are validated against observations of components of the surface energy balance (SEB) collected over contrasting desert-shrub and playa land surfaces of the Great Salt Lake Desert in northwestern Utah. Over the desert shrub, a large underprediction of sensible heat flux and an overprediction of ground heat flux occurred during the autumn campaign when the model-analyzed soil moisture was considerably higher than the measured soil moisture. Simulations that incorporate in situ measurements of soil moisture into the land surface analyses and use a modified parameterization for soil thermal conductivity greatly reduce these errors over the desert shrub but exacerbate the overprediction of latent heat flux over the playa. The Noah land surface model coupled to WRF does not capture the many unusual playa land surface processes, and simulations that incorporate satellite-derived albedo and reduce the saturation vapor pressure over the playa only marginally improve the forecasts of the SEB components. Nevertheless, the forecast of the 2-m temperature difference between the playa and desert shrub improves, which increases the strength of the daytime off-playa breeze. The stronger off-playa breeze, however, does not substantially reduce the mean absolute errors in overall 10-m wind speed and direction. This work highlights some deficiencies of the Noah land surface model over two common arid land surfaces and demonstrates the importance of accurate land surface analyses over a dryland region.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Apr 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial