Sensitivity of the Brewer–Dobson Circulation and Polar Vortex Variability to Parameterized Nonorographic Gravity Wave Drag in a High-Resolution Atmospheric Model

Sensitivity of the Brewer–Dobson Circulation and Polar Vortex Variability to Parameterized... AbstractThe role of parameterized nonorographic gravity wave drag (NOGWD) and its seasonal interaction with the resolved wave drag in the stratosphere has been extensively studied in low-resolution (coarser than 1.9° × 2.5°) climate models but is comparatively unexplored in higher-resolution models. Using the European Centre for Medium-Range Weather Forecasts Integrated Forecast System at 0.7° × 0.7° resolution, the wave drivers of the Brewer–Dobson circulation are diagnosed and the circulation sensitivity to the NOGW launch flux is explored. NOGWs are found to account for nearly 20% of the lower-stratospheric Southern Hemisphere (SH) polar cap downwelling and for less than 10% of the lower-stratospheric tropical upwelling and Northern Hemisphere (NH) polar cap downwelling. Despite these relatively small numbers, there are complex interactions between NOGWD and resolved wave drag, in both polar regions. Seasonal cycle analysis reveals a temporal offset in the resolved and parameterized wave interaction: the NOGWD response to altered source fluxes is largest in midwinter, while the resolved wave response is largest in the late winter and spring. This temporal offset is especially prominent in the SH. The impact of NOGWD on sudden stratospheric warming (SSW) life cycles and the final warming date in the SH is also investigated. An increase in NOGWD leads to an increase in SSW frequency, reduction in amplitude and persistence, and an earlier recovery of the stratopause following an SSW event. The SH final warming date is also brought forward when NOGWD is increased. Thus, NOGWD is still found to be a very important parameterization for stratospheric dynamics even in a high-resolution atmospheric model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Sensitivity of the Brewer–Dobson Circulation and Polar Vortex Variability to Parameterized Nonorographic Gravity Wave Drag in a High-Resolution Atmospheric Model

Loading next page...
 
/lp/ams/sensitivity-of-the-brewer-dobson-circulation-and-polar-vortex-AnCxwOZbkC
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0304.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe role of parameterized nonorographic gravity wave drag (NOGWD) and its seasonal interaction with the resolved wave drag in the stratosphere has been extensively studied in low-resolution (coarser than 1.9° × 2.5°) climate models but is comparatively unexplored in higher-resolution models. Using the European Centre for Medium-Range Weather Forecasts Integrated Forecast System at 0.7° × 0.7° resolution, the wave drivers of the Brewer–Dobson circulation are diagnosed and the circulation sensitivity to the NOGW launch flux is explored. NOGWs are found to account for nearly 20% of the lower-stratospheric Southern Hemisphere (SH) polar cap downwelling and for less than 10% of the lower-stratospheric tropical upwelling and Northern Hemisphere (NH) polar cap downwelling. Despite these relatively small numbers, there are complex interactions between NOGWD and resolved wave drag, in both polar regions. Seasonal cycle analysis reveals a temporal offset in the resolved and parameterized wave interaction: the NOGWD response to altered source fluxes is largest in midwinter, while the resolved wave response is largest in the late winter and spring. This temporal offset is especially prominent in the SH. The impact of NOGWD on sudden stratospheric warming (SSW) life cycles and the final warming date in the SH is also investigated. An increase in NOGWD leads to an increase in SSW frequency, reduction in amplitude and persistence, and an earlier recovery of the stratopause following an SSW event. The SH final warming date is also brought forward when NOGWD is increased. Thus, NOGWD is still found to be a very important parameterization for stratospheric dynamics even in a high-resolution atmospheric model.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: May 9, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off