Sensitivity of Idealized Moist Baroclinic Waves to Environmental Temperature and Moisture Content

Sensitivity of Idealized Moist Baroclinic Waves to Environmental Temperature and Moisture Content AbstractIdealized simulations are used to examine the sensitivity of moist baroclinic wave growth to environmental temperature and moisture content. With relative humidity held fixed, the surface temperature at 45°N, denoted T0, is varied from 275 to 290 K. As T0 increases, the atmospheric moisture content, moist instability, and moist available potential energy also increase. For the chosen initial configuration, moist waves develop larger eddy kinetic energy Ke than corresponding dry waves, but enhanced diabatic heating at larger T0 does not further increase Ke. This finding is linked to a warm-frontal cyclonic potential vorticity (PV) anomaly that strengthens and shifts downstream at larger T0 owing to increased diabatic heating along the frontal cloud band. This eastward shift feeds back negatively on the parent cyclone by increasing the downstream export of mechanical energy aloft and degrading the phasing between dry baroclinic vertical motion and buoyancy within the warm sector. The latter suppresses the conversion from eddy potential energy to Ke [C(Pe, Ke)], offsetting a direct enhancement of C(Pe, Ke) by diabatic heating. Compared to their dry counterparts, isolated moist waves (initiated by a single finite-amplitude PV anomaly) display a similar sensitivity to T0, while periodic wave trains (initiated by multiple such anomalies) exhibit a stronger negative relationship. The latter stems from anticyclonic diabatic PV anomalies aloft that originate along the warm front and recirculate through the system to interact with the upper-level trough. This interaction leads to a horizontal forward wave tilt that enhances the conversion of wave Ke into zonal-mean kinetic energy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Sensitivity of Idealized Moist Baroclinic Waves to Environmental Temperature and Moisture Content

Loading next page...
 
/lp/ams/sensitivity-of-idealized-moist-baroclinic-waves-to-environmental-B2pfRKUzb0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0188.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIdealized simulations are used to examine the sensitivity of moist baroclinic wave growth to environmental temperature and moisture content. With relative humidity held fixed, the surface temperature at 45°N, denoted T0, is varied from 275 to 290 K. As T0 increases, the atmospheric moisture content, moist instability, and moist available potential energy also increase. For the chosen initial configuration, moist waves develop larger eddy kinetic energy Ke than corresponding dry waves, but enhanced diabatic heating at larger T0 does not further increase Ke. This finding is linked to a warm-frontal cyclonic potential vorticity (PV) anomaly that strengthens and shifts downstream at larger T0 owing to increased diabatic heating along the frontal cloud band. This eastward shift feeds back negatively on the parent cyclone by increasing the downstream export of mechanical energy aloft and degrading the phasing between dry baroclinic vertical motion and buoyancy within the warm sector. The latter suppresses the conversion from eddy potential energy to Ke [C(Pe, Ke)], offsetting a direct enhancement of C(Pe, Ke) by diabatic heating. Compared to their dry counterparts, isolated moist waves (initiated by a single finite-amplitude PV anomaly) display a similar sensitivity to T0, while periodic wave trains (initiated by multiple such anomalies) exhibit a stronger negative relationship. The latter stems from anticyclonic diabatic PV anomalies aloft that originate along the warm front and recirculate through the system to interact with the upper-level trough. This interaction leads to a horizontal forward wave tilt that enhances the conversion of wave Ke into zonal-mean kinetic energy.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Jan 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off