Seasonal Variations in Severe Weather Forecast Skill in an Experimental Convection-Allowing Model

Seasonal Variations in Severe Weather Forecast Skill in an Experimental Convection-Allowing Model AbstractEight years of daily, experimental, deterministic, convection-allowing model (CAM) forecasts, produced by the National Severe Storms Laboratory, were evaluated to assess their ability at predicting severe weather hazards over a diverse collection of seasons, regions, and environments. To do so, forecasts of severe weather hazards were produced and verified as in previous studies using CAM output, namely by thresholding the updraft helicity (UH) field, smoothing the resulting binary field to create surrogate severe probability forecasts (SSPFs), and verifying the SSPFs against observed storm reports. SSPFs were most skillful during the spring and fall, with a relative minimum in skill observed during the summer. SSPF skill during the winter months was more variable than during other seasons, partly due to the limited sample size of events, but was often less than that during the warm season. The seasonal behavior of SSPF skill was partly driven by the relationship between the UH threshold and the likelihood of obtaining severe storm reports. Varying UH thresholds by season and region produced SSPFs that were more skillful than using a fixed UH threshold to identify severe convection. Accounting for this variability was most important during the cool season, when a lower UH threshold produced larger SSPF skill compared to warm-season events, and during the summer, when large differences in skill occurred within different parts of the continental United States (CONUS), depending on the choice of UH threshold. This relationship between UH threshold and SSPF skill is discussed within the larger scope of generating skillful CAM-based guidance for hazardous convective weather and verifying CAM predictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Seasonal Variations in Severe Weather Forecast Skill in an Experimental Convection-Allowing Model

Loading next page...
 
/lp/ams/seasonal-variations-in-severe-weather-forecast-skill-in-an-ewT8ddLaxl
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0043.1
Publisher site
See Article on Publisher Site

Abstract

AbstractEight years of daily, experimental, deterministic, convection-allowing model (CAM) forecasts, produced by the National Severe Storms Laboratory, were evaluated to assess their ability at predicting severe weather hazards over a diverse collection of seasons, regions, and environments. To do so, forecasts of severe weather hazards were produced and verified as in previous studies using CAM output, namely by thresholding the updraft helicity (UH) field, smoothing the resulting binary field to create surrogate severe probability forecasts (SSPFs), and verifying the SSPFs against observed storm reports. SSPFs were most skillful during the spring and fall, with a relative minimum in skill observed during the summer. SSPF skill during the winter months was more variable than during other seasons, partly due to the limited sample size of events, but was often less than that during the warm season. The seasonal behavior of SSPF skill was partly driven by the relationship between the UH threshold and the likelihood of obtaining severe storm reports. Varying UH thresholds by season and region produced SSPFs that were more skillful than using a fixed UH threshold to identify severe convection. Accounting for this variability was most important during the cool season, when a lower UH threshold produced larger SSPF skill compared to warm-season events, and during the summer, when large differences in skill occurred within different parts of the continental United States (CONUS), depending on the choice of UH threshold. This relationship between UH threshold and SSPF skill is discussed within the larger scope of generating skillful CAM-based guidance for hazardous convective weather and verifying CAM predictions.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Oct 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off