Seasonal Dependence of Coupling between Storm Tracks and Sea Surface Temperature in the Southern Hemisphere Midlatitudes: A Statistical Assessment

Seasonal Dependence of Coupling between Storm Tracks and Sea Surface Temperature in the Southern... AbstractTwo-way coupling between sea surface temperature (SST) variations in the midlatitude southern oceans and changes of synoptic-scale (2–8 day) eddy activities in the lower and upper troposphere throughout the year is investigated based on lagged maximum covariance analysis using reanalysis datasets from 1951 to 2000. Results show a strong seasonal dependence of the coupling, as characterized by the most prominent one in austral midsummer (January). On one hand, SST variations in austral late spring (primarily October) are likely to influence storm tracks in the following January. That is, significant warm SST anomalies in the western midlatitude areas of South Atlantic and south Indian Ocean could result in the systematic strengthening of the low-level and upper-level eddy activities, which is presumably attributed to the coherent intensification of the SST front and the lower-tropospheric baroclinicity. Particularly, interannual variability (a spectral peak at 4 yr) of SST in the western midlatitude South Atlantic in October could play a predominant role in driving the corresponding variability of the Southern Hemisphere storm tracks three months later. The timing of the discernible response of storm tracks is also discussed based on the preliminary results of sensitivity experiments. On the other hand, the strengthened eddy activities in January continue to induce the dipolelike patterns of SST anomalies in the midlatitude southern oceans. Those SST response patterns are, to the first order, determined by changes of the net surface heat flux. The anomalous Ekman advections in part driven by the storm-track changes also contribute to SST anomalies in the southern subtropical South Atlantic and the western midlatitude South Pacific. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Seasonal Dependence of Coupling between Storm Tracks and Sea Surface Temperature in the Southern Hemisphere Midlatitudes: A Statistical Assessment

Loading next page...
 
/lp/ams/seasonal-dependence-of-coupling-between-storm-tracks-and-sea-surface-zvcz5ABA16
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0196.1
Publisher site
See Article on Publisher Site

Abstract

AbstractTwo-way coupling between sea surface temperature (SST) variations in the midlatitude southern oceans and changes of synoptic-scale (2–8 day) eddy activities in the lower and upper troposphere throughout the year is investigated based on lagged maximum covariance analysis using reanalysis datasets from 1951 to 2000. Results show a strong seasonal dependence of the coupling, as characterized by the most prominent one in austral midsummer (January). On one hand, SST variations in austral late spring (primarily October) are likely to influence storm tracks in the following January. That is, significant warm SST anomalies in the western midlatitude areas of South Atlantic and south Indian Ocean could result in the systematic strengthening of the low-level and upper-level eddy activities, which is presumably attributed to the coherent intensification of the SST front and the lower-tropospheric baroclinicity. Particularly, interannual variability (a spectral peak at 4 yr) of SST in the western midlatitude South Atlantic in October could play a predominant role in driving the corresponding variability of the Southern Hemisphere storm tracks three months later. The timing of the discernible response of storm tracks is also discussed based on the preliminary results of sensitivity experiments. On the other hand, the strengthened eddy activities in January continue to induce the dipolelike patterns of SST anomalies in the midlatitude southern oceans. Those SST response patterns are, to the first order, determined by changes of the net surface heat flux. The anomalous Ekman advections in part driven by the storm-track changes also contribute to SST anomalies in the southern subtropical South Atlantic and the western midlatitude South Pacific.

Journal

Journal of ClimateAmerican Meteorological Society

Published: May 27, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off