Sea Surface Temperatures from the GOES-8 Geostationary Satellite

Sea Surface Temperatures from the GOES-8 Geostationary Satellite The introduction of the 10-bit, five-band, multispectral visible and thermal infrared scanner on the National Oceanic and Atmospheric Administration's GOES-8 satellite in 1994 offers an opportunity to estimate sea surface temperatures from a geostationary satellite. The advantage of the Geostationary Operational Environmental Satellite (GOES) over the traditional Advanced Very High Resolution Radiometer is the 30-min interval between images, which can increase the daily quantity of cloud-free ocean observations. Linear regression coefficients are estimated for GOES-8 by using the sea surface temperatures derived from the NOAA-14 polar-orbiting satellite as the dependent variable and the GOES infrared split window channels and the satellite zenith angle as independent variables. The standard error between the polar and geostationary sea surface temperature is 0.35C. Since the polar satellite sea surface temperature is estimated within 0.5C relative to drifting buoy near-surface measurements, this implies that the GOES-8 infrared scanner can be used to estimate sea surface temperatures to better than 1.0C relative to buoys. Daily composites of hourly GOES-8 sea surface temperatures are used to illustrate the capability of the GOES to produce improved cloud-free images of the ocean. Hourly time series reveal a 2C diurnal surface temperature cycle in the eastern subtropical Pacific with a peak near 1200 LT. The rapid onset of coastal up welling along the southern coast of Mexico during December of 1996 was resolved at hourly intervals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Sea Surface Temperatures from the GOES-8 Geostationary Satellite

Loading next page...
 
/lp/ams/sea-surface-temperatures-from-the-goes-8-geostationary-satellite-iMXdjPx0pC
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1997)078<1971:SSTFTG>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

The introduction of the 10-bit, five-band, multispectral visible and thermal infrared scanner on the National Oceanic and Atmospheric Administration's GOES-8 satellite in 1994 offers an opportunity to estimate sea surface temperatures from a geostationary satellite. The advantage of the Geostationary Operational Environmental Satellite (GOES) over the traditional Advanced Very High Resolution Radiometer is the 30-min interval between images, which can increase the daily quantity of cloud-free ocean observations. Linear regression coefficients are estimated for GOES-8 by using the sea surface temperatures derived from the NOAA-14 polar-orbiting satellite as the dependent variable and the GOES infrared split window channels and the satellite zenith angle as independent variables. The standard error between the polar and geostationary sea surface temperature is 0.35C. Since the polar satellite sea surface temperature is estimated within 0.5C relative to drifting buoy near-surface measurements, this implies that the GOES-8 infrared scanner can be used to estimate sea surface temperatures to better than 1.0C relative to buoys. Daily composites of hourly GOES-8 sea surface temperatures are used to illustrate the capability of the GOES to produce improved cloud-free images of the ocean. Hourly time series reveal a 2C diurnal surface temperature cycle in the eastern subtropical Pacific with a peak near 1200 LT. The rapid onset of coastal up welling along the southern coast of Mexico during December of 1996 was resolved at hourly intervals.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Sep 24, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off