Scattering of a Semidiurnal Barotropic Kelvin Wave into Internal Waves over Wide Continental Shelves

Scattering of a Semidiurnal Barotropic Kelvin Wave into Internal Waves over Wide Continental Shelves AbstractIn boundary areas of the World Ocean, a semidiurnal tide propagates in the form of a Kelvin wave mode trapped by the coastline. Over wide continental shelves, the semidiurnal tide is no longer a pure Kelvin wave but attains features of a zero-mode edge wave. As a result, the wave structure and the alongshore energy flux concentrate over the continental shelf and slope topography and become very sensitive to the variations of shelf geometry. When a semidiurnal Kelvin wave encounters alongshore changes of the shelf width, its energy scatters into other wave modes, including internal waves. A particularly strong scattering occurs on wide shelves, where Kelvin wave structure undergoes significant modifications over short alongshore distances. These dynamics are studied using the Regional Ocean Modeling System (ROMS). This study found that when the alongshore energy flux in the Kelvin wave mode converges on the shelf, the offshore wave radiation occurs through barotropic waves, while for the divergent alongshore energy flux, internal waves are generated. Under favorable conditions, more than 10% of the incident barotropic Kelvin wave energy flux can be scattered into internal waves. For the surface-intensified stratification mostly the first internal mode is generated, while for the uniform with depth stratification, multiple internal modes are present in the form of an internal wave beam. A nondimensional internal wave scattering parameter is derived based on the theoretical properties of a Kelvin wave mode, bottom topography, and stratification. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Scattering of a Semidiurnal Barotropic Kelvin Wave into Internal Waves over Wide Continental Shelves

Loading next page...
 
/lp/ams/scattering-of-a-semidiurnal-barotropic-kelvin-wave-into-internal-waves-xhitCu0BJ0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
D.O.I.
10.1175/JPO-D-16-0284.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn boundary areas of the World Ocean, a semidiurnal tide propagates in the form of a Kelvin wave mode trapped by the coastline. Over wide continental shelves, the semidiurnal tide is no longer a pure Kelvin wave but attains features of a zero-mode edge wave. As a result, the wave structure and the alongshore energy flux concentrate over the continental shelf and slope topography and become very sensitive to the variations of shelf geometry. When a semidiurnal Kelvin wave encounters alongshore changes of the shelf width, its energy scatters into other wave modes, including internal waves. A particularly strong scattering occurs on wide shelves, where Kelvin wave structure undergoes significant modifications over short alongshore distances. These dynamics are studied using the Regional Ocean Modeling System (ROMS). This study found that when the alongshore energy flux in the Kelvin wave mode converges on the shelf, the offshore wave radiation occurs through barotropic waves, while for the divergent alongshore energy flux, internal waves are generated. Under favorable conditions, more than 10% of the incident barotropic Kelvin wave energy flux can be scattered into internal waves. For the surface-intensified stratification mostly the first internal mode is generated, while for the uniform with depth stratification, multiple internal modes are present in the form of an internal wave beam. A nondimensional internal wave scattering parameter is derived based on the theoretical properties of a Kelvin wave mode, bottom topography, and stratification.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Oct 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial