Scale Characterization and Correction of Diurnal Cycle Errors in MAPLE

Scale Characterization and Correction of Diurnal Cycle Errors in MAPLE AbstractThe most widely used technique for nowcasting of quantitative precipitation in operational and research centers is the Lagrangian extrapolation of the latest radar observations. However, this technique has a limited forecast skill because of the assumption made on its formulation, such as the fact that the motion vectors do not change and, even more important for convective events, neglect any growth or decay in the precipitation field. In this work, the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) errors have been computed for 10 yr of radar composite data over the continental United States. The study of these errors shows systematic bias depending on the time of day. This effect is related to the solar cycle, whose heating energy results in an increase in the average rainfall in the afternoon. This external forcing interacts with the atmospheric system, creating local initiation and dissipation of convection depending on orography, land use, cloud coverage, etc. The signal of the diurnal cycle in MAPLE precipitation forecast has been studied in different locations and spatial scales as a function of lead time in order to recognize where, when, and for which spatial scales the signal is significant. This information has been used in the development of a scaling correction scheme where the mean errors due to the diurnal cycle are adjusted. The results show that the developed methodology improves the forecast for the spatial scales and locations where the diurnal cycle signal is significant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Scale Characterization and Correction of Diurnal Cycle Errors in MAPLE

Loading next page...
 
/lp/ams/scale-characterization-and-correction-of-diurnal-cycle-errors-in-maple-OJHgTsPugr
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0344.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe most widely used technique for nowcasting of quantitative precipitation in operational and research centers is the Lagrangian extrapolation of the latest radar observations. However, this technique has a limited forecast skill because of the assumption made on its formulation, such as the fact that the motion vectors do not change and, even more important for convective events, neglect any growth or decay in the precipitation field. In this work, the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE) errors have been computed for 10 yr of radar composite data over the continental United States. The study of these errors shows systematic bias depending on the time of day. This effect is related to the solar cycle, whose heating energy results in an increase in the average rainfall in the afternoon. This external forcing interacts with the atmospheric system, creating local initiation and dissipation of convection depending on orography, land use, cloud coverage, etc. The signal of the diurnal cycle in MAPLE precipitation forecast has been studied in different locations and spatial scales as a function of lead time in order to recognize where, when, and for which spatial scales the signal is significant. This information has been used in the development of a scaling correction scheme where the mean errors due to the diurnal cycle are adjusted. The results show that the developed methodology improves the forecast for the spatial scales and locations where the diurnal cycle signal is significant.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Sep 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off