Satellite Precipitation Characterization, Error Modeling, and Error Correction Using Censored Shifted Gamma Distributions

Satellite Precipitation Characterization, Error Modeling, and Error Correction Using Censored... AbstractSatellite multisensor precipitation products (SMPPs) have a variety of potential uses, but suffer from relatively poor accuracy due to systematic biases and random errors in precipitation occurrence and magnitude. We use the Censored Shifted Gamma Distribution (CSGD) to characterize the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA), a commonly-used SMPP, and to compare it against the rain gage-based North American Land Data Assimilation System Phase 2 (NLDAS-2) reference precipitation dataset across the conterminous United States. The CSGD describes both the occurrence and the magnitude of precipitation. Climatological CSGD characterization reveals significant regional differences between TMPA and NLDAS-2 in terms of magnitude and probability of occurrence. We also use a flexible CSGD-based error modeling framework to quantify errors in TMPA relative to NLDAS-2. The framework can model conditional bias as either a linear or nonlinear function of satellite precipitation rate and can produce a “conditional CSGD” of describing the distribution of “true” precipitation based on a satellite observation. The framework is also used to “merge” TMPA with atmospheric variables from Modern-Era Retrospective analysis for Research and Applications (MERRA-2) to reduce SMPP errors. Despite the coarse resolution of MERRA-2, this merging offers robust reductions in random error due to the better performance of numerical models in resolving stratiform precipitation. Improvements in the near-realtime version of TMPA are relatively greater than for the higher-latency research version. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Satellite Precipitation Characterization, Error Modeling, and Error Correction Using Censored Shifted Gamma Distributions

Loading next page...
 
/lp/ams/satellite-precipitation-characterization-error-modeling-and-error-vq6u9L1BnE
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/JHM-D-17-0060.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSatellite multisensor precipitation products (SMPPs) have a variety of potential uses, but suffer from relatively poor accuracy due to systematic biases and random errors in precipitation occurrence and magnitude. We use the Censored Shifted Gamma Distribution (CSGD) to characterize the Tropical Rainfall Measurement Mission Multi-Satellite Precipitation Analysis (TMPA), a commonly-used SMPP, and to compare it against the rain gage-based North American Land Data Assimilation System Phase 2 (NLDAS-2) reference precipitation dataset across the conterminous United States. The CSGD describes both the occurrence and the magnitude of precipitation. Climatological CSGD characterization reveals significant regional differences between TMPA and NLDAS-2 in terms of magnitude and probability of occurrence. We also use a flexible CSGD-based error modeling framework to quantify errors in TMPA relative to NLDAS-2. The framework can model conditional bias as either a linear or nonlinear function of satellite precipitation rate and can produce a “conditional CSGD” of describing the distribution of “true” precipitation based on a satellite observation. The framework is also used to “merge” TMPA with atmospheric variables from Modern-Era Retrospective analysis for Research and Applications (MERRA-2) to reduce SMPP errors. Despite the coarse resolution of MERRA-2, this merging offers robust reductions in random error due to the better performance of numerical models in resolving stratiform precipitation. Improvements in the near-realtime version of TMPA are relatively greater than for the higher-latency research version.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Sep 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off