Satellite-Based Atmospheric Infrared Sounder Development and Applications

Satellite-Based Atmospheric Infrared Sounder Development and Applications AbstractAtmospheric sounding of the vertical changes in temperature and moisture is one of the key contributions from meteorological satellites. The concept of using satellite infrared radiation observations for retrieving atmospheric temperature was first proposed by Jean I. F. King. Lewis D. Kaplan noted that the radiation from different spectral regions are primarily emanating from different atmospheric layers, which can be used to retrieve the atmospheric temperature at different heights in the atmosphere. The United States launched the first meteorological satellite Television Infrared Observation Satellite-1 (TIROS-1) on 1 April 1960, opening a new era of observing the Earth and its atmosphere from space. Since then, hundreds of meteorological satellites have been launched by space agencies, including those in Europe, China, Japan, Russia, India, Korea, and others. With the rapid development of atmospheric sounding technology and radiative transfer models, it became possible to determine the atmospheric state from combined satellite- and ground-based measurements. With advances in computing power, forecast model development, data assimilation, and observing technologies, numerical weather prediction (NWP) has achieved consistently better results and thereby improved the prediction and early warning of severe weather events as well as fostered the initial monitoring of global climate change. The purpose of this paper is to summarize and discuss the development of satellite vertical sounding capability, quantitative profile retrieval theory, and applications of satellite-based atmospheric sounding measurements, with a focus on infrared sounding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Satellite-Based Atmospheric Infrared Sounder Development and Applications

Loading next page...
 
/lp/ams/satellite-based-atmospheric-infrared-sounder-development-and-jUvpMjQnzd
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
eISSN
1520-0477
D.O.I.
10.1175/BAMS-D-16-0293.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAtmospheric sounding of the vertical changes in temperature and moisture is one of the key contributions from meteorological satellites. The concept of using satellite infrared radiation observations for retrieving atmospheric temperature was first proposed by Jean I. F. King. Lewis D. Kaplan noted that the radiation from different spectral regions are primarily emanating from different atmospheric layers, which can be used to retrieve the atmospheric temperature at different heights in the atmosphere. The United States launched the first meteorological satellite Television Infrared Observation Satellite-1 (TIROS-1) on 1 April 1960, opening a new era of observing the Earth and its atmosphere from space. Since then, hundreds of meteorological satellites have been launched by space agencies, including those in Europe, China, Japan, Russia, India, Korea, and others. With the rapid development of atmospheric sounding technology and radiative transfer models, it became possible to determine the atmospheric state from combined satellite- and ground-based measurements. With advances in computing power, forecast model development, data assimilation, and observing technologies, numerical weather prediction (NWP) has achieved consistently better results and thereby improved the prediction and early warning of severe weather events as well as fostered the initial monitoring of global climate change. The purpose of this paper is to summarize and discuss the development of satellite vertical sounding capability, quantitative profile retrieval theory, and applications of satellite-based atmospheric sounding measurements, with a focus on infrared sounding.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Mar 26, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off