Salinity Variability Associated with the Positive Indian Ocean Dipole and Its Impact on the Upper Ocean Temperature

Salinity Variability Associated with the Positive Indian Ocean Dipole and Its Impact on the Upper... AbstractBoth surface and subsurface salinity variability associated with positive Indian Ocean dipole (pIOD) events and its impacts on the sea surface temperature (SST) evolution are investigated through analysis of observational/reanalysis data and sensitivity experiments with a one-dimensional mixed layer model. During the pIOD, negative (positive) sea surface salinity (SSS) anomalies appear in the central-eastern equatorial Indian Ocean (southeastern tropical Indian Ocean). In addition to these SSS anomalies, positive (negative) salinity anomalies are found near the pycnocline in the eastern equatorial Indian Ocean (southern tropical Indian Ocean). A salinity balance analysis shows that these subsurface salinity anomalies are mainly generated by zonal and vertical salt advection anomalies induced by anomalous currents associated with the pIOD. These salinity anomalies stabilize (destabilize) the upper ocean stratification in the central-eastern equatorial (southeastern tropical) Indian Ocean. By decomposing observed densities into contribution from temperature and salinity anomalies, it is shown that the contribution from anomalous salinity stratification is comparable to that from anomalous thermal stratification. Furthermore, impacts of these salinity anomalies on the SST evolution are quantified for the first time using a one-dimensional mixed layer model. Since enhanced salinity stratification in the central-eastern equatorial Indian Ocean suppresses vertical mixing, significant warming of about 0.3°–0.5°C occurs. On the other hand, stronger vertical mixing associated with reduced salinity stratification results in significant SST cooling of about 0.2°–0.5°C in the southeastern tropical Indian Ocean. These results suggest that variations in salinity may potentially play a crucial role in the evolution of the pIOD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Salinity Variability Associated with the Positive Indian Ocean Dipole and Its Impact on the Upper Ocean Temperature

Loading next page...
 
/lp/ams/salinity-variability-associated-with-the-positive-indian-ocean-dipole-fWf6CWbOJk
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0133.1
Publisher site
See Article on Publisher Site

Abstract

AbstractBoth surface and subsurface salinity variability associated with positive Indian Ocean dipole (pIOD) events and its impacts on the sea surface temperature (SST) evolution are investigated through analysis of observational/reanalysis data and sensitivity experiments with a one-dimensional mixed layer model. During the pIOD, negative (positive) sea surface salinity (SSS) anomalies appear in the central-eastern equatorial Indian Ocean (southeastern tropical Indian Ocean). In addition to these SSS anomalies, positive (negative) salinity anomalies are found near the pycnocline in the eastern equatorial Indian Ocean (southern tropical Indian Ocean). A salinity balance analysis shows that these subsurface salinity anomalies are mainly generated by zonal and vertical salt advection anomalies induced by anomalous currents associated with the pIOD. These salinity anomalies stabilize (destabilize) the upper ocean stratification in the central-eastern equatorial (southeastern tropical) Indian Ocean. By decomposing observed densities into contribution from temperature and salinity anomalies, it is shown that the contribution from anomalous salinity stratification is comparable to that from anomalous thermal stratification. Furthermore, impacts of these salinity anomalies on the SST evolution are quantified for the first time using a one-dimensional mixed layer model. Since enhanced salinity stratification in the central-eastern equatorial Indian Ocean suppresses vertical mixing, significant warming of about 0.3°–0.5°C occurs. On the other hand, stronger vertical mixing associated with reduced salinity stratification results in significant SST cooling of about 0.2°–0.5°C in the southeastern tropical Indian Ocean. These results suggest that variations in salinity may potentially play a crucial role in the evolution of the pIOD.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Oct 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial