Roles of Streamwise and Transverse Partial-Vorticity Components in Steady Inviscid Isentropic Supercell-Like Flows

Roles of Streamwise and Transverse Partial-Vorticity Components in Steady Inviscid Isentropic... AbstractInvestigations of tornadogenesis in supercells attempt to find the origin of the tornado’s large vorticity by determining vorticity generation and amplification along trajectories that enter the tornado from a horizontally uniform unstable environment. Insights into tornadogenesis are provided by finding analytical formulas for vorticity variations along streamlines in idealized, steady, inviscid, isentropic inflows of dry air imported from the environment. The streamlines and vortex lines lie in the stationary isentropic surfaces so the vorticity is 2D. The transverse vorticity component (positive leftward of the streamlines) arises from imported transverse vorticity and from baroclinic vorticity accumulated in streamwise temperature gradients. The streamwise component stems from imported streamwise vorticity, from baroclinic vorticity accrued in transverse temperature gradients, and from positive transverse vorticity that is turned streamwise in cyclonically curved flow by a “river-bend process.” It is amplified in subsiding air as it approaches the ground. Streamwise stretching propagates a parcel’s streamwise vorticity forward in time. In steady flow, vorticity decomposes into baroclinic vorticity and two barotropic parts ωBTIS and ωBTIC arising from imported storm-relative streamwise vorticity (directional shear) and storm-relative crosswise vorticity (speed shear), respectively. The Beltrami vorticity ωBTIS is purely streamwise. It explains why abundant environmental storm-relative streamwise vorticity close to ground favors tornadic supercells. It flows directly into the updraft base unmodified apart from streamwise stretching, establishing mesocyclonic rotation and strong vortex suction at low altitudes. Increase (decrease) in storm-relative environmental wind speed with height near the ground accelerates (delays) tornadogenesis as positive (negative) ωBTIC is turned into streamwise (antistreamwise) vorticity within cyclonically curved flow around the mesocyclone. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Roles of Streamwise and Transverse Partial-Vorticity Components in Steady Inviscid Isentropic Supercell-Like Flows

Loading next page...
 
/lp/ams/roles-of-streamwise-and-transverse-partial-vorticity-components-in-vZm0egk0rO
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0332.1
Publisher site
See Article on Publisher Site

Abstract

AbstractInvestigations of tornadogenesis in supercells attempt to find the origin of the tornado’s large vorticity by determining vorticity generation and amplification along trajectories that enter the tornado from a horizontally uniform unstable environment. Insights into tornadogenesis are provided by finding analytical formulas for vorticity variations along streamlines in idealized, steady, inviscid, isentropic inflows of dry air imported from the environment. The streamlines and vortex lines lie in the stationary isentropic surfaces so the vorticity is 2D. The transverse vorticity component (positive leftward of the streamlines) arises from imported transverse vorticity and from baroclinic vorticity accumulated in streamwise temperature gradients. The streamwise component stems from imported streamwise vorticity, from baroclinic vorticity accrued in transverse temperature gradients, and from positive transverse vorticity that is turned streamwise in cyclonically curved flow by a “river-bend process.” It is amplified in subsiding air as it approaches the ground. Streamwise stretching propagates a parcel’s streamwise vorticity forward in time. In steady flow, vorticity decomposes into baroclinic vorticity and two barotropic parts ωBTIS and ωBTIC arising from imported storm-relative streamwise vorticity (directional shear) and storm-relative crosswise vorticity (speed shear), respectively. The Beltrami vorticity ωBTIS is purely streamwise. It explains why abundant environmental storm-relative streamwise vorticity close to ground favors tornadic supercells. It flows directly into the updraft base unmodified apart from streamwise stretching, establishing mesocyclonic rotation and strong vortex suction at low altitudes. Increase (decrease) in storm-relative environmental wind speed with height near the ground accelerates (delays) tornadogenesis as positive (negative) ωBTIC is turned into streamwise (antistreamwise) vorticity within cyclonically curved flow around the mesocyclone.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Sep 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off