Role of Finite-Amplitude Rossby Waves and Nonconservative Processes in Downward Migration of Extratropical Flow Anomalies

Role of Finite-Amplitude Rossby Waves and Nonconservative Processes in Downward Migration of... AbstractThere is growing evidence that stratospheric variability exerts a noticeable imprint on tropospheric weather and climate. Despite clear evidence of these impacts, the principal mechanism whereby stratospheric variability influences tropospheric circulation has remained elusive. Here, the authors introduce a novel approach, based on the theory of finite-amplitude wave activity, for quantifying the role of adiabatic and non-conservative effects on the mean flow that shape the downward coupling from the stratosphere to the troposphere during stratospheric vortex weakening (SVW) events. The advantage of using this theory is that eddy effects (at finite amplitude) on the mean flow can be more readily distinguished from nonconservative effects.The results show (in confirmation of previous work) that the downward migration of extratropical wind anomalies is largely attributable to dynamical adjustments induced by fluctuating finite-amplitude wave forcing. The nonconservative effects, on the other hand, contribute to maintaining the downward signals in the recovery stage within the stratosphere, hinting at the importance of mixing and diabatic heating. The analysis further indicates that variations in stratospheric finite-amplitude wave forcing are too weak to account for the attendant changes and shapes in the tropospheric flow. It is suggested that the indirect effect of tropospheric finite-amplitude wave activity through the residual displacements is needed to amplify and prolong the tropospheric wind responses over several weeks. The results also reveal that the local tropospheric wave activity over the North Pacific and North Atlantic sectors plays a significant role in shaping the high-latitude tropospheric wind response to SVW events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Role of Finite-Amplitude Rossby Waves and Nonconservative Processes in Downward Migration of Extratropical Flow Anomalies

Loading next page...
 
/lp/ams/role-of-finite-amplitude-rossby-waves-and-nonconservative-processes-in-WNWDiTqBCI
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0376.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThere is growing evidence that stratospheric variability exerts a noticeable imprint on tropospheric weather and climate. Despite clear evidence of these impacts, the principal mechanism whereby stratospheric variability influences tropospheric circulation has remained elusive. Here, the authors introduce a novel approach, based on the theory of finite-amplitude wave activity, for quantifying the role of adiabatic and non-conservative effects on the mean flow that shape the downward coupling from the stratosphere to the troposphere during stratospheric vortex weakening (SVW) events. The advantage of using this theory is that eddy effects (at finite amplitude) on the mean flow can be more readily distinguished from nonconservative effects.The results show (in confirmation of previous work) that the downward migration of extratropical wind anomalies is largely attributable to dynamical adjustments induced by fluctuating finite-amplitude wave forcing. The nonconservative effects, on the other hand, contribute to maintaining the downward signals in the recovery stage within the stratosphere, hinting at the importance of mixing and diabatic heating. The analysis further indicates that variations in stratospheric finite-amplitude wave forcing are too weak to account for the attendant changes and shapes in the tropospheric flow. It is suggested that the indirect effect of tropospheric finite-amplitude wave activity through the residual displacements is needed to amplify and prolong the tropospheric wind responses over several weeks. The results also reveal that the local tropospheric wave activity over the North Pacific and North Atlantic sectors plays a significant role in shaping the high-latitude tropospheric wind response to SVW events.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Feb 16, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial