Responses of the Summertime Subtropical Anticyclones to Global Warming

Responses of the Summertime Subtropical Anticyclones to Global Warming AbstractSubtropical anticyclones dominate the subtropical ocean basins in summer. Using the multimodel output from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the future changes of the subtropical anticyclones as a response to global warming are investigated, based on the changes in subsidence, low-level divergence, and rotational wind. The subtropical anticyclones over the North Pacific, South Atlantic, and south Indian Ocean are projected to become weaker, whereas the North Atlantic subtropical anticyclone (NASA) intensifies, and the South Pacific subtropical anticyclone (SPSA) shows uncertainty but is likely to intensify. Diagnostic analyses and idealized simulations suggest that the projected changes in the subtropical anticyclones are well explained by the combined effect of increased tropospheric static stability and changes in diabatic heating. Increased static stability acts to reduce the intensity of all the subtropical anticyclones, through the positive mean advection of stratification change (MASC) over the subsidence regions of the subtropical anticyclones. The pattern of change in diabatic heating is dominated by latent heating associated with changes in precipitation, which is enhanced over the western North Pacific under the “richest get richer” mechanism but is reduced over subtropical North Atlantic and South Pacific due to a local minimum of SST warming amplitude. The change in the diabatic heating pattern substantially enhances the subtropical anticyclones over the North Atlantic and South Pacific but weakens the North Pacific subtropical anticyclone. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Responses of the Summertime Subtropical Anticyclones to Global Warming

Loading next page...
 
/lp/ams/responses-of-the-summertime-subtropical-anticyclones-to-global-warming-tverWbCs0s
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0529.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSubtropical anticyclones dominate the subtropical ocean basins in summer. Using the multimodel output from phase 5 of the Coupled Model Intercomparison Project (CMIP5), the future changes of the subtropical anticyclones as a response to global warming are investigated, based on the changes in subsidence, low-level divergence, and rotational wind. The subtropical anticyclones over the North Pacific, South Atlantic, and south Indian Ocean are projected to become weaker, whereas the North Atlantic subtropical anticyclone (NASA) intensifies, and the South Pacific subtropical anticyclone (SPSA) shows uncertainty but is likely to intensify. Diagnostic analyses and idealized simulations suggest that the projected changes in the subtropical anticyclones are well explained by the combined effect of increased tropospheric static stability and changes in diabatic heating. Increased static stability acts to reduce the intensity of all the subtropical anticyclones, through the positive mean advection of stratification change (MASC) over the subsidence regions of the subtropical anticyclones. The pattern of change in diabatic heating is dominated by latent heating associated with changes in precipitation, which is enhanced over the western North Pacific under the “richest get richer” mechanism but is reduced over subtropical North Atlantic and South Pacific due to a local minimum of SST warming amplitude. The change in the diabatic heating pattern substantially enhances the subtropical anticyclones over the North Atlantic and South Pacific but weakens the North Pacific subtropical anticyclone.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off