Reply to “Comment on ‘Using an ADCP to Estimate Turbulent Kinetic Energy Dissipation Rate in Sheltered Coastal Waters’”

Reply to “Comment on ‘Using an ADCP to Estimate Turbulent Kinetic Energy Dissipation Rate in... AbstractThis note is a comment in response to Gargett, who argues that a large-eddy estimate of turbulent dissipation rate using a horizontal length scale with a vertical velocity estimate, as in Greene et al., is a dubious approximation if the energy-containing eddies are anisotropic. A simulation of Langmuir cells and associated turbulence is used to support Gargett’s conclusions. This rebuttal reviews the approaches taken by Greene et al. and cites several instances of flawed reasoning by Gargett. This includes using Langmuir simulations to support the primary conclusion of Gargett, which seems unconnected to Greene et al.’s data and ignores a vast body of work on simulating Kelvin–Helmholtz instabilities, widely considered to be the dominant mechanism producing stratified turbulence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Reply to “Comment on ‘Using an ADCP to Estimate Turbulent Kinetic Energy Dissipation Rate in Sheltered Coastal Waters’”

Loading next page...
 
/lp/ams/reply-to-comment-on-using-an-adcp-to-estimate-turbulent-kinetic-energy-gaaXMb763S
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-16-0154.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis note is a comment in response to Gargett, who argues that a large-eddy estimate of turbulent dissipation rate using a horizontal length scale with a vertical velocity estimate, as in Greene et al., is a dubious approximation if the energy-containing eddies are anisotropic. A simulation of Langmuir cells and associated turbulence is used to support Gargett’s conclusions. This rebuttal reviews the approaches taken by Greene et al. and cites several instances of flawed reasoning by Gargett. This includes using Langmuir simulations to support the primary conclusion of Gargett, which seems unconnected to Greene et al.’s data and ignores a vast body of work on simulating Kelvin–Helmholtz instabilities, widely considered to be the dominant mechanism producing stratified turbulence.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: Jun 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off