Recent Trends in Extreme Precipitation and Temperature over Southeastern South America: The Dominant Role of Stratospheric Ozone Depletion in the CESM Large Ensemble

Recent Trends in Extreme Precipitation and Temperature over Southeastern South America: The... AbstractObservations show an increase in maximum precipitation extremes and a decrease in maximum temperature extremes over southeastern South America (SESA) in the second half of the twentieth century. The Community Earth System Model (CESM) Large Ensemble (LE) experiments are able to successfully reproduce the observed trends of extreme precipitation and temperature over SESA. Careful analysis of a smaller ensemble of CESM-LE single forcing experiments reveals that the trends of extreme precipitation and temperature over SESA are mostly caused by stratospheric ozone depletion. The underlying dynamical mechanism is investigated and it is found that, as a consequence of stratospheric ozone depletion and the resulting southward shift of tropospheric jet streams, anomalous easterly flow and more intense cyclones have occurred over SESA, which are favorable for heavier rainfall extremes and milder heat extremes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Recent Trends in Extreme Precipitation and Temperature over Southeastern South America: The Dominant Role of Stratospheric Ozone Depletion in the CESM Large Ensemble

Loading next page...
 
/lp/ams/recent-trends-in-extreme-precipitation-and-temperature-over-tMIHYPfm9Z
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0124.1
Publisher site
See Article on Publisher Site

Abstract

AbstractObservations show an increase in maximum precipitation extremes and a decrease in maximum temperature extremes over southeastern South America (SESA) in the second half of the twentieth century. The Community Earth System Model (CESM) Large Ensemble (LE) experiments are able to successfully reproduce the observed trends of extreme precipitation and temperature over SESA. Careful analysis of a smaller ensemble of CESM-LE single forcing experiments reveals that the trends of extreme precipitation and temperature over SESA are mostly caused by stratospheric ozone depletion. The underlying dynamical mechanism is investigated and it is found that, as a consequence of stratospheric ozone depletion and the resulting southward shift of tropospheric jet streams, anomalous easterly flow and more intense cyclones have occurred over SESA, which are favorable for heavier rainfall extremes and milder heat extremes.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off