Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps

Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps AbstractSnow plays a critical role in the water cycle of many mountain regions and heavily populated areas downstream. In this study, changes of snow water equivalent (SWE) time series from long-term stations in five Alpine countries are analyzed. The sites are located between 500 and 3000 m above mean sea level, and the analysis is mainly based on measurement series from 1 February (winter) and 1 April (spring). The investigation was performed over different time periods, including the last six decades. The large majority of the SWE time series demonstrate a reduction in snow mass, which is more pronounced for spring than for winter. The observed SWE decrease is independent of latitude or longitude, despite the different climate regions in the Alpine domain. In contrast to measurement series from other mountain ranges, even the highest sites revealed a decline in spring SWE. A comparison with a 100-yr mass balance series from a glacier in the central Alps demonstrates that the peak SWEs have been on a record-low level since around the beginning of the twenty-first century at high Alpine sites. In the long term, clearly increasing temperatures and a coincident weak reduction in precipitation are the main drivers for the pronounced snow mass loss in the past. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Recent Evidence of Large-Scale Receding Snow Water Equivalents in the European Alps

Loading next page...
 
/lp/ams/recent-evidence-of-large-scale-receding-snow-water-equivalents-in-the-cqR1XWadCe
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0188.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSnow plays a critical role in the water cycle of many mountain regions and heavily populated areas downstream. In this study, changes of snow water equivalent (SWE) time series from long-term stations in five Alpine countries are analyzed. The sites are located between 500 and 3000 m above mean sea level, and the analysis is mainly based on measurement series from 1 February (winter) and 1 April (spring). The investigation was performed over different time periods, including the last six decades. The large majority of the SWE time series demonstrate a reduction in snow mass, which is more pronounced for spring than for winter. The observed SWE decrease is independent of latitude or longitude, despite the different climate regions in the Alpine domain. In contrast to measurement series from other mountain ranges, even the highest sites revealed a decline in spring SWE. A comparison with a 100-yr mass balance series from a glacier in the central Alps demonstrates that the peak SWEs have been on a record-low level since around the beginning of the twenty-first century at high Alpine sites. In the long term, clearly increasing temperatures and a coincident weak reduction in precipitation are the main drivers for the pronounced snow mass loss in the past.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Apr 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off