Radiative Invigoration of Tropical Convection by Preceding Cirrus Clouds

Radiative Invigoration of Tropical Convection by Preceding Cirrus Clouds AbstractThis work seeks evidence for convective-radiative interactions in satellite measurements, with focus on the variability over the life cycle of tropical convection in search of the underlying processes at a fundamental level of the convective dynamics. To this end, the vertical profiles of cloud cover and radiative heating from the CloudSat-CALIPSO products are sorted into a composite time series around the hour of convective occurrence identified by the TRMM PR. The findings are summarized as follows. Cirrus cloud cover begins to increase, accompanied by a notable reduction of LW cooling, in moist atmospheres even 1-2 days before deep convection is invigorated. In contrast, LW cooling stays efficient and clouds remain shallow where the ambient air is very dry. To separate the radiative effects by the preceding cirrus clouds on convection from the direct effects of moisture, the observations with enhanced cirrus cover are isolated from those with suppressed cirrus under a moisture environment being nearly equal. It is found that rain rate is distinctly higher if the upper troposphere is cloudier regardless of moisture, suggesting that the cirrus radiative effects may be linked with the subsequent growth of convection. A possible mechanism to support this observational implication is discussed using a simple conceptual model. The model suggests that the preceding cirrus clouds could radiatively promote the moistening with the aid of the congestus-mode dynamics within a short period of time (about 2 days) as observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Radiative Invigoration of Tropical Convection by Preceding Cirrus Clouds

Loading next page...
 
/lp/ams/radiative-invigoration-of-tropical-convection-by-preceding-cirrus-zC3hspDSb0
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0355.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis work seeks evidence for convective-radiative interactions in satellite measurements, with focus on the variability over the life cycle of tropical convection in search of the underlying processes at a fundamental level of the convective dynamics. To this end, the vertical profiles of cloud cover and radiative heating from the CloudSat-CALIPSO products are sorted into a composite time series around the hour of convective occurrence identified by the TRMM PR. The findings are summarized as follows. Cirrus cloud cover begins to increase, accompanied by a notable reduction of LW cooling, in moist atmospheres even 1-2 days before deep convection is invigorated. In contrast, LW cooling stays efficient and clouds remain shallow where the ambient air is very dry. To separate the radiative effects by the preceding cirrus clouds on convection from the direct effects of moisture, the observations with enhanced cirrus cover are isolated from those with suppressed cirrus under a moisture environment being nearly equal. It is found that rain rate is distinctly higher if the upper troposphere is cloudier regardless of moisture, suggesting that the cirrus radiative effects may be linked with the subsequent growth of convection. A possible mechanism to support this observational implication is discussed using a simple conceptual model. The model suggests that the preceding cirrus clouds could radiatively promote the moistening with the aid of the congestus-mode dynamics within a short period of time (about 2 days) as observed.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Feb 28, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial