RADAR-Rainfall Uncertainties

RADAR-Rainfall Uncertainties Thirty years ago, Wilson and Brandes determined that radar data was underutilized and both confusion and misunderstanding exist about the inherent ability of radar to measure rainfall, about factors that contribute to errors, and about the importance of careful calibration and signal processing. In their seminal work, they addressed these issues by delineating the strengths and weaknesses of radar data and offering a detailed discussion of the different sources of uncertainties associated with radar-based estimates of rainfall. After three decades, we want to underscore the importance of Wilson and Brandes' paper by using it as a reference for discussing subsequent improvements in operational radar-rainfall technology in the United States. We replicated their analysis as closely as we could and present the results in this paper. Our results, which are based on an analysis of Weather Surveillance Radar-1988 Doppler (WSR-88D) data, indicate fairly substantial improvement in terms of the statistical measures used by Wilson and Brandes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Loading next page...
 
/lp/ams/radar-rainfall-uncertainties-yQActlkw0I
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/2009BAMS2747.1
Publisher site
See Article on Publisher Site

Abstract

Thirty years ago, Wilson and Brandes determined that radar data was underutilized and both confusion and misunderstanding exist about the inherent ability of radar to measure rainfall, about factors that contribute to errors, and about the importance of careful calibration and signal processing. In their seminal work, they addressed these issues by delineating the strengths and weaknesses of radar data and offering a detailed discussion of the different sources of uncertainties associated with radar-based estimates of rainfall. After three decades, we want to underscore the importance of Wilson and Brandes' paper by using it as a reference for discussing subsequent improvements in operational radar-rainfall technology in the United States. We replicated their analysis as closely as we could and present the results in this paper. Our results, which are based on an analysis of Weather Surveillance Radar-1988 Doppler (WSR-88D) data, indicate fairly substantial improvement in terms of the statistical measures used by Wilson and Brandes.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 7, 2010

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial