Radar Kinematic Information as a Surrogate for Isentropes in Stratiform Precipitation Systems

Radar Kinematic Information as a Surrogate for Isentropes in Stratiform Precipitation Systems AbstractThis study illustrates that dual-Doppler-derived wind shear (vertical gradient of the horizontal wind) in stratiform, nonturbulent flow is structured in long, thin striations. The reason this has not been documented before is that scanning ground-based radars have inadequate vertical resolution, deteriorating with range. Here data from an airborne radar with a fine, range-independent vertical resolution are used. A comparison of the radar-derived wind shear with model output of isentropes in vertical transects in the comma head of two frontal disturbances suggests that the wind shear layers describe material surfaces. Model output itself further confirms the alignment of isentropes with wind shear in vertical transects. Thus, Doppler-radar-derived wind shear (a kinematic conserved variable) may serve as a suitable proxy for thermodynamic conserved variables such as equivalent potential temperature in stratiform precipitation. Furthermore, the presence of shear striations in vertical transects can be used as a marker for nonturbulent flow, and their persistence as an indicator of limited dispersion in such flow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Radar Kinematic Information as a Surrogate for Isentropes in Stratiform Precipitation Systems

Loading next page...
 
/lp/ams/radar-kinematic-information-as-a-surrogate-for-isentropes-in-0yRQ7flhcB
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0470.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study illustrates that dual-Doppler-derived wind shear (vertical gradient of the horizontal wind) in stratiform, nonturbulent flow is structured in long, thin striations. The reason this has not been documented before is that scanning ground-based radars have inadequate vertical resolution, deteriorating with range. Here data from an airborne radar with a fine, range-independent vertical resolution are used. A comparison of the radar-derived wind shear with model output of isentropes in vertical transects in the comma head of two frontal disturbances suggests that the wind shear layers describe material surfaces. Model output itself further confirms the alignment of isentropes with wind shear in vertical transects. Thus, Doppler-radar-derived wind shear (a kinematic conserved variable) may serve as a suitable proxy for thermodynamic conserved variables such as equivalent potential temperature in stratiform precipitation. Furthermore, the presence of shear striations in vertical transects can be used as a marker for nonturbulent flow, and their persistence as an indicator of limited dispersion in such flow.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Sep 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial