Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using Gaussian beam approximation

Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave... AbstractThis work examines the influence of horizontal propagation of three-dimensional (3D) mountain waves on the wave momentum flux (WMF) within finite domains (e.g., the grid cell of general circulation models). Under the Wentzel-Kramers-Brillouin (WKB) approximation, analytical solutions are derived for hydrostatic nonrotating mountain waves using the Gaussian beam approximation (GBA), which incorporate both the wind vertical curvature effect and the height variation of stratification. The GBA solutions are validated against numerical simulations conducted using the Advanced Regional Prediction System (ARPS). In the situation of idealized terrain, wind and stratification, the WMF obtained from the GBA shows a good agreement with the numerical simulation. The effect of wind curvature in enhancing the WMF is captured, although the WKB-based GBA solution tends to overestimate the WMF, especially at small Richardson numbers of order unity. For realistic terrain and/or atmospheric conditions, there are some biases between the WKB-GBA and simulated WMFs, arising from the missing physics of wave reflection, etc. Nonetheless, the decreasing trend of finite-domain WMF with height, due to the horizontal propagation of 3D mountain waves, can be represented fairly well. Using the GBA, a new scheme is proposed to parameterize the orographic gravity wave drag (OGWD) in numerical models. Comparison with the traditional OGWD parameterization scheme reveals that the GBA-based scheme tends to produce OGWD at higher altitudes, as the horizontal propagation of mountain waves can reduce the wave amplitude and thus inhibit wave breaking. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Quantifying the effect of horizontal propagation of three-dimensional mountain waves on the wave momentum flux using Gaussian beam approximation

Loading next page...
 
/lp/ams/quantifying-the-effect-of-horizontal-propagation-of-three-dimensional-iVVZeVCzM5
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0275.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis work examines the influence of horizontal propagation of three-dimensional (3D) mountain waves on the wave momentum flux (WMF) within finite domains (e.g., the grid cell of general circulation models). Under the Wentzel-Kramers-Brillouin (WKB) approximation, analytical solutions are derived for hydrostatic nonrotating mountain waves using the Gaussian beam approximation (GBA), which incorporate both the wind vertical curvature effect and the height variation of stratification. The GBA solutions are validated against numerical simulations conducted using the Advanced Regional Prediction System (ARPS). In the situation of idealized terrain, wind and stratification, the WMF obtained from the GBA shows a good agreement with the numerical simulation. The effect of wind curvature in enhancing the WMF is captured, although the WKB-based GBA solution tends to overestimate the WMF, especially at small Richardson numbers of order unity. For realistic terrain and/or atmospheric conditions, there are some biases between the WKB-GBA and simulated WMFs, arising from the missing physics of wave reflection, etc. Nonetheless, the decreasing trend of finite-domain WMF with height, due to the horizontal propagation of 3D mountain waves, can be represented fairly well. Using the GBA, a new scheme is proposed to parameterize the orographic gravity wave drag (OGWD) in numerical models. Comparison with the traditional OGWD parameterization scheme reveals that the GBA-based scheme tends to produce OGWD at higher altitudes, as the horizontal propagation of mountain waves can reduce the wave amplitude and thus inhibit wave breaking.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 9, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off