Quantifying Residual, Eddy, and Mean Flow Effects on Mixing in an Idealized Circumpolar Current

Quantifying Residual, Eddy, and Mean Flow Effects on Mixing in an Idealized Circumpolar Current AbstractMeridional diffusivity is assessed for a baroclinically unstable jet in a high-latitude idealized circumpolar current (ICC) using the Model for Prediction across Scales Ocean (MPAS-O) and the online Lagrangian in Situ Global High-Performance Particle Tracking (LIGHT) diagnostic via space–time dispersion of particle clusters over 120 monthly realizations of O(106) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000) m2 s−1 and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100) m2 s−1 because of the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥80% of the total diffusivity relative to mean shear [O(100) m2 s−1], linear waves [O(1000) m2 s−1], and undecomposed full diffusivity [O(6000) m2 s−1]. Diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Physical Oceanography American Meteorological Society

Quantifying Residual, Eddy, and Mean Flow Effects on Mixing in an Idealized Circumpolar Current

Loading next page...
 
/lp/ams/quantifying-residual-eddy-and-mean-flow-effects-on-mixing-in-an-6kdJ8V95Wn
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0485
eISSN
1520-0485
D.O.I.
10.1175/JPO-D-16-0101.1
Publisher site
See Article on Publisher Site

Abstract

AbstractMeridional diffusivity is assessed for a baroclinically unstable jet in a high-latitude idealized circumpolar current (ICC) using the Model for Prediction across Scales Ocean (MPAS-O) and the online Lagrangian in Situ Global High-Performance Particle Tracking (LIGHT) diagnostic via space–time dispersion of particle clusters over 120 monthly realizations of O(106) particles on 11 potential density surfaces. Diffusivity in the jet reaches values of O(6000) m2 s−1 and is largest near the critical layer supporting mixing suppression and critical layer theory. Values in the vicinity of the shelf break are suppressed to O(100) m2 s−1 because of the presence of westward slope front currents. Diffusivity attenuates less rapidly with depth in the jet than both eddy velocity and kinetic energy scalings would suggest. Removal of the mean flow via high-pass filtering shifts the nonlinear parameter (ratio of the eddy velocity to eddy phase speed) into the linear wave regime by increasing the eddy phase speed via the depth-mean flow. Low-pass filtering, in contrast, quantifies the effect of mean shear. Diffusivity is decomposed into mean flow shear, linear waves, and the residual nonhomogeneous turbulence components, where turbulence dominates and eddy-produced filamentation strained by background mean shear enhances mixing, accounting for ≥80% of the total diffusivity relative to mean shear [O(100) m2 s−1], linear waves [O(1000) m2 s−1], and undecomposed full diffusivity [O(6000) m2 s−1]. Diffusivity parameterizations accounting for both the nonhomogeneous turbulence residual and depth variability are needed.

Journal

Journal of Physical OceanographyAmerican Meteorological Society

Published: Aug 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial