Prospects and Limitations of Seasonal Atmospheric GCM Predictions

Prospects and Limitations of Seasonal Atmospheric GCM Predictions Climate simulations and hindcast experiments of increasingly large ensemble size are being performed to determine the predictive capability of atmospheric general circulation models (AGCMs) on seasonal or longer timescales. These have exhibited large sensitivity to anomalous boundary forcing associated with global sea surface temperatures (SSTs). Large-scale patterns of climate anomalies are at times generated in the extratropics when the AGCM is forced by the SSTs associated with El Nio events. It remains to be determined whether on average such results imply useful predictive skill for seasonal means in the extratropics. Indeed, given the prospects for small, if not negligible, skill in the extratropics as revealed in variance tests of boundary-forced potential predictability, one is forced to question and examine the limits of AGCM methods.These issues are addressed within the context of a large ensemble of climate simulations using an AGCM forced with observed SSTs for the 198293 period. From the analysis of the model data it is argued that the impact of interannual changes in SSTs is to create a shift in the extratropical-mean state, although this shift is small and resides within the envelope of atmospheric states attained with climatological SSTs. This effect does not have any appreciable impact on the total variance of seasonal-mean atmospheric states and confirms the conclusions drawn from earlier studies.A reliable detection of the boundary-forced shift in the mean state, however, is shown to be feasible when a sufficiently large ensemble of model runs is considered. The shift in the mean state has a certain probability of being in phase with the observed seasonal anomalies. Indeed, the benefit of generating the ensemble prediction lies in the fact that it is the ensemble-mean response that nature has the greatest probability of selecting. Nonetheless, to the extent that the observed anomalies are at least partly the result of natural variability, AGCM-based seasonal predictions will be inherently probabilistic. Implications for AGCM simulations of the extratropical response to the boundary forcing, and for seasonal-mean predictions in general, are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Prospects and Limitations of Seasonal Atmospheric GCM Predictions

Loading next page...
 
/lp/ams/prospects-and-limitations-of-seasonal-atmospheric-gcm-predictions-uqfWDMN0cl
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1995)076<0335:PALOSA>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Climate simulations and hindcast experiments of increasingly large ensemble size are being performed to determine the predictive capability of atmospheric general circulation models (AGCMs) on seasonal or longer timescales. These have exhibited large sensitivity to anomalous boundary forcing associated with global sea surface temperatures (SSTs). Large-scale patterns of climate anomalies are at times generated in the extratropics when the AGCM is forced by the SSTs associated with El Nio events. It remains to be determined whether on average such results imply useful predictive skill for seasonal means in the extratropics. Indeed, given the prospects for small, if not negligible, skill in the extratropics as revealed in variance tests of boundary-forced potential predictability, one is forced to question and examine the limits of AGCM methods.These issues are addressed within the context of a large ensemble of climate simulations using an AGCM forced with observed SSTs for the 198293 period. From the analysis of the model data it is argued that the impact of interannual changes in SSTs is to create a shift in the extratropical-mean state, although this shift is small and resides within the envelope of atmospheric states attained with climatological SSTs. This effect does not have any appreciable impact on the total variance of seasonal-mean atmospheric states and confirms the conclusions drawn from earlier studies.A reliable detection of the boundary-forced shift in the mean state, however, is shown to be feasible when a sufficiently large ensemble of model runs is considered. The shift in the mean state has a certain probability of being in phase with the observed seasonal anomalies. Indeed, the benefit of generating the ensemble prediction lies in the fact that it is the ensemble-mean response that nature has the greatest probability of selecting. Nonetheless, to the extent that the observed anomalies are at least partly the result of natural variability, AGCM-based seasonal predictions will be inherently probabilistic. Implications for AGCM simulations of the extratropical response to the boundary forcing, and for seasonal-mean predictions in general, are discussed.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Mar 29, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off