Probability Distribution for the Visually Observed Fractional Cloud Cover over the Ocean

Probability Distribution for the Visually Observed Fractional Cloud Cover over the Ocean AbstractThe authors suggest a three-parameter bounded distribution from the family of mixed gamma distributions for characterizing the probability density distributions of fractional total and low cloud cover over the global oceans. The authors derive both the continuous form of this distribution and its discrete counterpart, which can be directly applied to cloud cover reports. The distribution is applied to the cloud cover characteristics reported by voluntary observing ships (VOS) for the period from 1950 to 2011 after filtering nighttime observations with poor lunar illumination. The suggested distribution demonstrates a high goodness of fit to the data and good skill in capturing probability distributions with different shapes. The authors present seasonal climatologies of the parameters of the derived distribution for the chosen 60-yr period and demonstrate that applying the PDF-based concept to the analysis of cloud cover allows identification of areas where similar mean cloud amounts can be produced by probability distributions with very different shapes. The roles of the different parameters of the distribution in producing the observed cloud conditions in different regions of the World Ocean are discussed. The application of the derived probability distribution allows for accurate estimation of the percentiles of the distribution, which represent the probabilities of specific cloud conditions. These probabilities are presented for both total and low cloud cover, as well as for daytime and nighttime. The authors also discuss the applicability of the suggested distribution for the validation of different cloud cover data products over the globe and the prospects of additional applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Probability Distribution for the Visually Observed Fractional Cloud Cover over the Ocean

Loading next page...
 
/lp/ams/probability-distribution-for-the-visually-observed-fractional-cloud-sK64AjlIHl
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0317.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe authors suggest a three-parameter bounded distribution from the family of mixed gamma distributions for characterizing the probability density distributions of fractional total and low cloud cover over the global oceans. The authors derive both the continuous form of this distribution and its discrete counterpart, which can be directly applied to cloud cover reports. The distribution is applied to the cloud cover characteristics reported by voluntary observing ships (VOS) for the period from 1950 to 2011 after filtering nighttime observations with poor lunar illumination. The suggested distribution demonstrates a high goodness of fit to the data and good skill in capturing probability distributions with different shapes. The authors present seasonal climatologies of the parameters of the derived distribution for the chosen 60-yr period and demonstrate that applying the PDF-based concept to the analysis of cloud cover allows identification of areas where similar mean cloud amounts can be produced by probability distributions with very different shapes. The roles of the different parameters of the distribution in producing the observed cloud conditions in different regions of the World Ocean are discussed. The application of the derived probability distribution allows for accurate estimation of the percentiles of the distribution, which represent the probabilities of specific cloud conditions. These probabilities are presented for both total and low cloud cover, as well as for daytime and nighttime. The authors also discuss the applicability of the suggested distribution for the validation of different cloud cover data products over the globe and the prospects of additional applications.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Apr 17, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off