Probabilities of Causation of Climate Changes

Probabilities of Causation of Climate Changes AbstractMultiple changes in Earth’s climate system have been observed over the past decades. Determining how likely each of these changes is to have been caused by human influence is important for decision making with regard to mitigation and adaptation policy. Here we describe an approach for deriving the probability that anthropogenic forcings have caused a given observed change. The proposed approach is anchored into causal counterfactual theory (Pearl 2009), which was introduced recently, and in fact partly used already, in the context of extreme weather event attribution (EA). We argue that these concepts are also relevant to, and can be straightforwardly extended to, the context of detection and attribution of long-term trends associated with climate change (D&A). For this purpose, and in agreement with the principle of fingerprinting applied in the conventional D&A framework, a trajectory of change is converted into an event occurrence defined by maximizing the causal evidence associated to the forcing under scrutiny. Other key assumptions used in the conventional D&A framework, in particular those related to numerical model error, can also be adapted conveniently to this approach. Our proposal thus allows us to bridge the conventional framework with the standard causal theory, in an attempt to improve the quantification of causal probabilities. An illustration suggests that our approach is prone to yield a significantly higher estimate of the probability that anthropogenic forcings have caused the observed temperature change, thus supporting more assertive causal claims. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Probabilities of Causation of Climate Changes

Loading next page...
 
/lp/ams/probabilities-of-causation-of-climate-changes-7v2pdCj8L4
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0304.1
Publisher site
See Article on Publisher Site

Abstract

AbstractMultiple changes in Earth’s climate system have been observed over the past decades. Determining how likely each of these changes is to have been caused by human influence is important for decision making with regard to mitigation and adaptation policy. Here we describe an approach for deriving the probability that anthropogenic forcings have caused a given observed change. The proposed approach is anchored into causal counterfactual theory (Pearl 2009), which was introduced recently, and in fact partly used already, in the context of extreme weather event attribution (EA). We argue that these concepts are also relevant to, and can be straightforwardly extended to, the context of detection and attribution of long-term trends associated with climate change (D&A). For this purpose, and in agreement with the principle of fingerprinting applied in the conventional D&A framework, a trajectory of change is converted into an event occurrence defined by maximizing the causal evidence associated to the forcing under scrutiny. Other key assumptions used in the conventional D&A framework, in particular those related to numerical model error, can also be adapted conveniently to this approach. Our proposal thus allows us to bridge the conventional framework with the standard causal theory, in an attempt to improve the quantification of causal probabilities. An illustration suggests that our approach is prone to yield a significantly higher estimate of the probability that anthropogenic forcings have caused the observed temperature change, thus supporting more assertive causal claims.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Jul 9, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off