Proactive QC: A Fully Flow-Dependent Quality Control Scheme Based on EFSO

Proactive QC: A Fully Flow-Dependent Quality Control Scheme Based on EFSO AbstractDespite dramatic improvements over the last decades, operational NWP forecasts still occasionally suffer from abrupt drops in their forecast skill. Such forecast skill “dropouts” may occur even in a perfect NWP system because of the stochastic nature of NWP but can also result from flaws in the NWP system. Recent studies have shown that dropouts occur due not to a model’s deficiencies but to misspecified initial conditions, suggesting that they could be mitigated by improving the quality control (QC) system so that the observation-minus-background (O-B) innovations that would degrade a forecast can be detected and rejected. The ensemble forecast sensitivity to observations (EFSO) technique enables for the quantification of how much each observation has improved or degraded the forecast. A recent study has shown that 24-h EFSO can detect detrimental O-B innovations that caused regional forecast skill dropouts and that the forecast can be improved by not assimilating them. Inspired by that success, a new QC method is proposed, termed proactive QC (PQC), that detects detrimental innovations 6 h after the analysis using EFSO and then repeats the analysis and forecast without using them. PQC is implemented and tested on a lower-resolution version of NCEP’s operational global NWP system. It is shown that EFSO is insensitive to the choice of verification and lead time (24 or 6 h) and that PQC likely improves the analysis, as attested to by forecast improvements of up to 5 days and beyond. Strategies for reducing the computational costs and further optimizing the observation rejection criteria are also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Proactive QC: A Fully Flow-Dependent Quality Control Scheme Based on EFSO

Loading next page...
 
/lp/ams/proactive-qc-a-fully-flow-dependent-quality-control-scheme-based-on-FV75b4Sc03
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0290.1
Publisher site
See Article on Publisher Site

Abstract

AbstractDespite dramatic improvements over the last decades, operational NWP forecasts still occasionally suffer from abrupt drops in their forecast skill. Such forecast skill “dropouts” may occur even in a perfect NWP system because of the stochastic nature of NWP but can also result from flaws in the NWP system. Recent studies have shown that dropouts occur due not to a model’s deficiencies but to misspecified initial conditions, suggesting that they could be mitigated by improving the quality control (QC) system so that the observation-minus-background (O-B) innovations that would degrade a forecast can be detected and rejected. The ensemble forecast sensitivity to observations (EFSO) technique enables for the quantification of how much each observation has improved or degraded the forecast. A recent study has shown that 24-h EFSO can detect detrimental O-B innovations that caused regional forecast skill dropouts and that the forecast can be improved by not assimilating them. Inspired by that success, a new QC method is proposed, termed proactive QC (PQC), that detects detrimental innovations 6 h after the analysis using EFSO and then repeats the analysis and forecast without using them. PQC is implemented and tested on a lower-resolution version of NCEP’s operational global NWP system. It is shown that EFSO is insensitive to the choice of verification and lead time (24 or 6 h) and that PQC likely improves the analysis, as attested to by forecast improvements of up to 5 days and beyond. Strategies for reducing the computational costs and further optimizing the observation rejection criteria are also discussed.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Aug 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off