Predictive Anisotropy of Surface Winds by Linear Statistical Prediction

Predictive Anisotropy of Surface Winds by Linear Statistical Prediction AbstractThis study considers characteristics of the statistical predictability of surface wind vectors by linear regression using midtropospheric climate fields as predictors. Specifically, predictive anisotropy, which refers to unequal predictability of wind components projected onto different directions, is considered. The spatial distribution of predictability of surface wind components is determined at 2109 land surface meteorological stations across the globe. The results show that predictive anisotropy is a common feature that is spatially organized in terms of both magnitude and direction. The relationships between predictability and potential influential factors (topographic complexity, mean surface wind vectors, and standard deviation and kurtosis of wind components) are considered. It is found that poor predictability of wind components is generally associated with wind components characterized by relatively weak and non-Gaussian variability. While predictive anisotropy is often found in regions characterized by complex topography, marked predictive anisotropy also occurs away from evident surface heterogeneity. The relationships between predictability, variability, and shape of distribution of surface wind components are described using an idealized statistical model of large-scale and local influences on surface wind. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Predictive Anisotropy of Surface Winds by Linear Statistical Prediction

Loading next page...
 
/lp/ams/predictive-anisotropy-of-surface-winds-by-linear-statistical-0rfNcXeP50
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0507.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study considers characteristics of the statistical predictability of surface wind vectors by linear regression using midtropospheric climate fields as predictors. Specifically, predictive anisotropy, which refers to unequal predictability of wind components projected onto different directions, is considered. The spatial distribution of predictability of surface wind components is determined at 2109 land surface meteorological stations across the globe. The results show that predictive anisotropy is a common feature that is spatially organized in terms of both magnitude and direction. The relationships between predictability and potential influential factors (topographic complexity, mean surface wind vectors, and standard deviation and kurtosis of wind components) are considered. It is found that poor predictability of wind components is generally associated with wind components characterized by relatively weak and non-Gaussian variability. While predictive anisotropy is often found in regions characterized by complex topography, marked predictive anisotropy also occurs away from evident surface heterogeneity. The relationships between predictability, variability, and shape of distribution of surface wind components are described using an idealized statistical model of large-scale and local influences on surface wind.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off