Predictive Anisotropy of Surface Winds by Linear Statistical Prediction

Predictive Anisotropy of Surface Winds by Linear Statistical Prediction AbstractThis study considers characteristics of the statistical predictability of surface wind vectors by linear regression using midtropospheric climate fields as predictors. Specifically, predictive anisotropy, which refers to unequal predictability of wind components projected onto different directions, is considered. The spatial distribution of predictability of surface wind components is determined at 2109 land surface meteorological stations across the globe. The results show that predictive anisotropy is a common feature that is spatially organized in terms of both magnitude and direction. The relationships between predictability and potential influential factors (topographic complexity, mean surface wind vectors, and standard deviation and kurtosis of wind components) are considered. It is found that poor predictability of wind components is generally associated with wind components characterized by relatively weak and non-Gaussian variability. While predictive anisotropy is often found in regions characterized by complex topography, marked predictive anisotropy also occurs away from evident surface heterogeneity. The relationships between predictability, variability, and shape of distribution of surface wind components are described using an idealized statistical model of large-scale and local influences on surface wind. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Predictive Anisotropy of Surface Winds by Linear Statistical Prediction

Loading next page...
 
/lp/ams/predictive-anisotropy-of-surface-winds-by-linear-statistical-0rfNcXeP50
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
eISSN
1520-0442
D.O.I.
10.1175/JCLI-D-16-0507.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis study considers characteristics of the statistical predictability of surface wind vectors by linear regression using midtropospheric climate fields as predictors. Specifically, predictive anisotropy, which refers to unequal predictability of wind components projected onto different directions, is considered. The spatial distribution of predictability of surface wind components is determined at 2109 land surface meteorological stations across the globe. The results show that predictive anisotropy is a common feature that is spatially organized in terms of both magnitude and direction. The relationships between predictability and potential influential factors (topographic complexity, mean surface wind vectors, and standard deviation and kurtosis of wind components) are considered. It is found that poor predictability of wind components is generally associated with wind components characterized by relatively weak and non-Gaussian variability. While predictive anisotropy is often found in regions characterized by complex topography, marked predictive anisotropy also occurs away from evident surface heterogeneity. The relationships between predictability, variability, and shape of distribution of surface wind components are described using an idealized statistical model of large-scale and local influences on surface wind.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Aug 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off