Precipitating Quasigeostrophic Equations and Potential Vorticity Inversion with Phase Changes

Precipitating Quasigeostrophic Equations and Potential Vorticity Inversion with Phase Changes AbstractPrecipitating versions of the quasigeostrophic (QG) equations are derived systematically, starting from the equations of a cloud-resolving model. The presence of phase changes of water from vapor to liquid and vice versa leads to important differences from the dry QG case. The precipitating QG (PQG) equations, in their simplest form, have two variables to describe the full system: a potential vorticity (PV) variable and a variable M including moisture effects. A PV-and-M inversion allows the determination of all other variables, and it involves an elliptic partial differential equation (PDE) that is nonlinear because of phase changes between saturated and unsaturated regions. An example PV-and-M inversion is provided for an idealized cold-core cyclone with two vertical levels. A key point illustrated by this example is that the phase interface location is unknown a priori from PV and M, and it is discovered as part of the inversion process. Several choices of a moist PV variable are discussed, including subtleties that arise because of phase changes. Boussinesq and anelastic versions of the PQG equations are described, as well as moderate and asymptotically large rainfall speeds. An energy conservation principle suggests that the model has firm physical and mathematical underpinnings. Finally, an asymptotic analysis provides a systematic derivation of the PQG equations, which arise as the limiting dynamics of a moist atmosphere with phase changes, in the limit of rapid rotation and strong stratification in terms of both potential temperature and equivalent potential temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Precipitating Quasigeostrophic Equations and Potential Vorticity Inversion with Phase Changes

Loading next page...
 
/lp/ams/precipitating-quasigeostrophic-equations-and-potential-vorticity-yXQ8Dc59eJ
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0023.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPrecipitating versions of the quasigeostrophic (QG) equations are derived systematically, starting from the equations of a cloud-resolving model. The presence of phase changes of water from vapor to liquid and vice versa leads to important differences from the dry QG case. The precipitating QG (PQG) equations, in their simplest form, have two variables to describe the full system: a potential vorticity (PV) variable and a variable M including moisture effects. A PV-and-M inversion allows the determination of all other variables, and it involves an elliptic partial differential equation (PDE) that is nonlinear because of phase changes between saturated and unsaturated regions. An example PV-and-M inversion is provided for an idealized cold-core cyclone with two vertical levels. A key point illustrated by this example is that the phase interface location is unknown a priori from PV and M, and it is discovered as part of the inversion process. Several choices of a moist PV variable are discussed, including subtleties that arise because of phase changes. Boussinesq and anelastic versions of the PQG equations are described, as well as moderate and asymptotically large rainfall speeds. An energy conservation principle suggests that the model has firm physical and mathematical underpinnings. Finally, an asymptotic analysis provides a systematic derivation of the PQG equations, which arise as the limiting dynamics of a moist atmosphere with phase changes, in the limit of rapid rotation and strong stratification in terms of both potential temperature and equivalent potential temperature.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Oct 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial