Potential Predictability of the MaddenJulian Oscillation

Potential Predictability of the MaddenJulian Oscillation The objective of this study is to estimate the limit of dynamical predictability of the MaddenJulian oscillation (MJO). Ensembles of twin predictability experiments were carried out with the NASA Goddard Laboratory for the Atmospheres (GLA) atmospheric general circulation model (AGCM) using specified annual cycle SSTs. Initial conditions were taken from a 10-yr control simulation during periods of strong MJO activity identified via extended empirical orthogonal function (EOF) analysis of 3090-day bandpassed tropical rainfall. From this analysis, 15 cases were chosen when the MJO convective center was located over the Indian Ocean, Maritime Continent, western Pacific Ocean, and central Pacific Ocean, respectively, making 60 MJO cases in total. In addition, 15 cases were selected that exhibited very little to no MJO activity. Two different sets of small random perturbations were added to these 75 initial states. Simulations were then performed for 90 days from each of these 150 perturbed initial conditions. A measure of potential predictability was constructed based on a ratio of the signal associated with the MJO, in terms of rainfall or 200-hPa velocity potential (VP200), and the mean-square error between sets of twin forecasts. This ratio indicates that useful predictability for this model's MJO extends out to about 2530 days for VP200 and to about 1015 days for rainfall. This is in contrast to the timescales of useful predictability associated with persistence forecasts or forecasts associated with daily weather variations, which in either case extend out only to about 1015 days for VP200 and 810 days for rainfall. The predictability measure shows modest dependence on the phase of the MJO, with greater predictability for the convective phase at short (< ~5 days) lead times and for the suppressed phase at longer (> ~15 days) lead times. In addition, the predictability of intraseasonal variability during periods of weak MJO activity is significantly diminished compared to periods of strong MJO activity. The implications of these results as well as their associated model and analysis caveats are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Potential Predictability of the MaddenJulian Oscillation

Loading next page...
 
/lp/ams/potential-predictability-of-the-maddenjulian-oscillation-ioqSlGg0BK
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-84-1-33
Publisher site
See Article on Publisher Site

Abstract

The objective of this study is to estimate the limit of dynamical predictability of the MaddenJulian oscillation (MJO). Ensembles of twin predictability experiments were carried out with the NASA Goddard Laboratory for the Atmospheres (GLA) atmospheric general circulation model (AGCM) using specified annual cycle SSTs. Initial conditions were taken from a 10-yr control simulation during periods of strong MJO activity identified via extended empirical orthogonal function (EOF) analysis of 3090-day bandpassed tropical rainfall. From this analysis, 15 cases were chosen when the MJO convective center was located over the Indian Ocean, Maritime Continent, western Pacific Ocean, and central Pacific Ocean, respectively, making 60 MJO cases in total. In addition, 15 cases were selected that exhibited very little to no MJO activity. Two different sets of small random perturbations were added to these 75 initial states. Simulations were then performed for 90 days from each of these 150 perturbed initial conditions. A measure of potential predictability was constructed based on a ratio of the signal associated with the MJO, in terms of rainfall or 200-hPa velocity potential (VP200), and the mean-square error between sets of twin forecasts. This ratio indicates that useful predictability for this model's MJO extends out to about 2530 days for VP200 and to about 1015 days for rainfall. This is in contrast to the timescales of useful predictability associated with persistence forecasts or forecasts associated with daily weather variations, which in either case extend out only to about 1015 days for VP200 and 810 days for rainfall. The predictability measure shows modest dependence on the phase of the MJO, with greater predictability for the convective phase at short (< ~5 days) lead times and for the suppressed phase at longer (> ~15 days) lead times. In addition, the predictability of intraseasonal variability during periods of weak MJO activity is significantly diminished compared to periods of strong MJO activity. The implications of these results as well as their associated model and analysis caveats are discussed.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 8, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off