Potential Predictability of the MaddenJulian Oscillation

Potential Predictability of the MaddenJulian Oscillation The objective of this study is to estimate the limit of dynamical predictability of the MaddenJulian oscillation (MJO). Ensembles of twin predictability experiments were carried out with the NASA Goddard Laboratory for the Atmospheres (GLA) atmospheric general circulation model (AGCM) using specified annual cycle SSTs. Initial conditions were taken from a 10-yr control simulation during periods of strong MJO activity identified via extended empirical orthogonal function (EOF) analysis of 3090-day bandpassed tropical rainfall. From this analysis, 15 cases were chosen when the MJO convective center was located over the Indian Ocean, Maritime Continent, western Pacific Ocean, and central Pacific Ocean, respectively, making 60 MJO cases in total. In addition, 15 cases were selected that exhibited very little to no MJO activity. Two different sets of small random perturbations were added to these 75 initial states. Simulations were then performed for 90 days from each of these 150 perturbed initial conditions. A measure of potential predictability was constructed based on a ratio of the signal associated with the MJO, in terms of rainfall or 200-hPa velocity potential (VP200), and the mean-square error between sets of twin forecasts. This ratio indicates that useful predictability for this model's MJO extends out to about 2530 days for VP200 and to about 1015 days for rainfall. This is in contrast to the timescales of useful predictability associated with persistence forecasts or forecasts associated with daily weather variations, which in either case extend out only to about 1015 days for VP200 and 810 days for rainfall. The predictability measure shows modest dependence on the phase of the MJO, with greater predictability for the convective phase at short (< ~5 days) lead times and for the suppressed phase at longer (> ~15 days) lead times. In addition, the predictability of intraseasonal variability during periods of weak MJO activity is significantly diminished compared to periods of strong MJO activity. The implications of these results as well as their associated model and analysis caveats are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Potential Predictability of the MaddenJulian Oscillation

Loading next page...
 
/lp/ams/potential-predictability-of-the-maddenjulian-oscillation-ioqSlGg0BK
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-84-1-33
Publisher site
See Article on Publisher Site

Abstract

The objective of this study is to estimate the limit of dynamical predictability of the MaddenJulian oscillation (MJO). Ensembles of twin predictability experiments were carried out with the NASA Goddard Laboratory for the Atmospheres (GLA) atmospheric general circulation model (AGCM) using specified annual cycle SSTs. Initial conditions were taken from a 10-yr control simulation during periods of strong MJO activity identified via extended empirical orthogonal function (EOF) analysis of 3090-day bandpassed tropical rainfall. From this analysis, 15 cases were chosen when the MJO convective center was located over the Indian Ocean, Maritime Continent, western Pacific Ocean, and central Pacific Ocean, respectively, making 60 MJO cases in total. In addition, 15 cases were selected that exhibited very little to no MJO activity. Two different sets of small random perturbations were added to these 75 initial states. Simulations were then performed for 90 days from each of these 150 perturbed initial conditions. A measure of potential predictability was constructed based on a ratio of the signal associated with the MJO, in terms of rainfall or 200-hPa velocity potential (VP200), and the mean-square error between sets of twin forecasts. This ratio indicates that useful predictability for this model's MJO extends out to about 2530 days for VP200 and to about 1015 days for rainfall. This is in contrast to the timescales of useful predictability associated with persistence forecasts or forecasts associated with daily weather variations, which in either case extend out only to about 1015 days for VP200 and 810 days for rainfall. The predictability measure shows modest dependence on the phase of the MJO, with greater predictability for the convective phase at short (< ~5 days) lead times and for the suppressed phase at longer (> ~15 days) lead times. In addition, the predictability of intraseasonal variability during periods of weak MJO activity is significantly diminished compared to periods of strong MJO activity. The implications of these results as well as their associated model and analysis caveats are discussed.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 8, 2003

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial