Potential Predictability of Seasonal Extreme Precipitation Accumulation in China

Potential Predictability of Seasonal Extreme Precipitation Accumulation in China AbstractThe potential predictability of seasonal extreme precipitation accumulation (SEPA) across mainland China is evaluated, based on daily precipitation observations during 1960–2013 at 675 stations. The potential predictability value (PPV) of SEPA is calculated for each station by decomposing the observed SEPA variance into a part associated with stochastic daily rainfall variability and another part associated with longer-time-scale climate processes. A Markov chain model is constructed for each station and a Monte Carlo simulation is applied to estimate the stochastic part of the variance. The results suggest that there are more potentially predictable regions for summer than for the other seasons, especially over southern China, the Yangtze River valley, the north China plain, and northwestern China. There are also regions of large PPVs in southern China for autumn and winter and in northwestern China for spring. The SEPA series for the regions of large PPVs are deemed not entirely stochastic, either with long-term trends (e.g., increasing trends in inland northwestern China) or significant correlation with well-known large-scale climate processes (e.g., East Asian winter monsoon for southern China in winter and El Niño for the Yangtze River valley in summer). This fact not only verifies the claim that the regions have potential predictability but also facilitates predictive studies of the regional extreme precipitation associated with large-scale climate processes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

Potential Predictability of Seasonal Extreme Precipitation Accumulation in China

Loading next page...
 
/lp/ams/potential-predictability-of-seasonal-extreme-precipitation-s0KAeOAXAM
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
eISSN
1525-7541
D.O.I.
10.1175/JHM-D-16-0141.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe potential predictability of seasonal extreme precipitation accumulation (SEPA) across mainland China is evaluated, based on daily precipitation observations during 1960–2013 at 675 stations. The potential predictability value (PPV) of SEPA is calculated for each station by decomposing the observed SEPA variance into a part associated with stochastic daily rainfall variability and another part associated with longer-time-scale climate processes. A Markov chain model is constructed for each station and a Monte Carlo simulation is applied to estimate the stochastic part of the variance. The results suggest that there are more potentially predictable regions for summer than for the other seasons, especially over southern China, the Yangtze River valley, the north China plain, and northwestern China. There are also regions of large PPVs in southern China for autumn and winter and in northwestern China for spring. The SEPA series for the regions of large PPVs are deemed not entirely stochastic, either with long-term trends (e.g., increasing trends in inland northwestern China) or significant correlation with well-known large-scale climate processes (e.g., East Asian winter monsoon for southern China in winter and El Niño for the Yangtze River valley in summer). This fact not only verifies the claim that the regions have potential predictability but also facilitates predictive studies of the regional extreme precipitation associated with large-scale climate processes.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Apr 17, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off