Positive and negative eddy feedbacks acting on mid-latitude jet variability in a three-level quasi-geostrophic model

Positive and negative eddy feedbacks acting on mid-latitude jet variability in a three-level... AbstractThe variability of midlatitude jets is investigated in a long-term integration of a dry three-level quasigeostrophic model on the sphere. As for most observed jets, the leading EOF of the zonal-mean wind corresponds to latitudinal shifts of the jet, and the second EOF to pulses of the jet speed. The first principal component (PC1) is also more persistent than the second one (PC2); this longer persistence arises from different eddy feedbacks both in the short-term, i.e within a few days following the peak of the PCs, and in the long-term. The short-term eddy feedbacks come from two distinct mechanisms. First, a planetary waveguide effect acts as a negative feedback on both PCs. The positive phases of PC1 and PC2, which correspond to poleward-shifted and accelerated jets respectively, are first driven then canceled by planetary waves reflecting on the equatorward flank of the jet. A similar process occurs for the negative phases when planetary waves reflect on the poleward flank of the jet. Second, synoptic waves also exert a short-term negative feedback on PC2: when the jet accelerates, the enhanced meridional wind shear increases the barotropic sink of eddy energy and depletes it very rapidly, therefore preventing synoptic eddies from maintaining the accelerated jet. Finally, at lags longer than their typical timescale, synoptic eddies drive a positive feedback on PC1 only. This feedback can be explained by a baroclinic mechanism in which the jet shift modifies the baroclinicity, causing first eddy heat flux then momentum convergence anomalies. This feedback is absent for PC2, despite some changes in the baroclinicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Positive and negative eddy feedbacks acting on mid-latitude jet variability in a three-level quasi-geostrophic model

Loading next page...
 
/lp/ams/positive-and-negative-eddy-feedbacks-acting-on-mid-latitude-jet-rdLhLlFlGR
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0217.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe variability of midlatitude jets is investigated in a long-term integration of a dry three-level quasigeostrophic model on the sphere. As for most observed jets, the leading EOF of the zonal-mean wind corresponds to latitudinal shifts of the jet, and the second EOF to pulses of the jet speed. The first principal component (PC1) is also more persistent than the second one (PC2); this longer persistence arises from different eddy feedbacks both in the short-term, i.e within a few days following the peak of the PCs, and in the long-term. The short-term eddy feedbacks come from two distinct mechanisms. First, a planetary waveguide effect acts as a negative feedback on both PCs. The positive phases of PC1 and PC2, which correspond to poleward-shifted and accelerated jets respectively, are first driven then canceled by planetary waves reflecting on the equatorward flank of the jet. A similar process occurs for the negative phases when planetary waves reflect on the poleward flank of the jet. Second, synoptic waves also exert a short-term negative feedback on PC2: when the jet accelerates, the enhanced meridional wind shear increases the barotropic sink of eddy energy and depletes it very rapidly, therefore preventing synoptic eddies from maintaining the accelerated jet. Finally, at lags longer than their typical timescale, synoptic eddies drive a positive feedback on PC1 only. This feedback can be explained by a baroclinic mechanism in which the jet shift modifies the baroclinicity, causing first eddy heat flux then momentum convergence anomalies. This feedback is absent for PC2, despite some changes in the baroclinicity.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 8, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off