Point Downscaling of Surface Wind Speed for Forecast Applications

Point Downscaling of Surface Wind Speed for Forecast Applications AbstractA statistical downscaling algorithm is introduced to forecast surface wind speed at a location. The downscaling algorithm consists of resolved and unresolved components to yield a time series of synthetic wind speeds at high time resolution. The resolved component is a bias-corrected numerical weather prediction model forecast of the 10-m wind speed at the location. The unresolved component is a simulated time series of the high-frequency component of the wind speed that is trained to match the variance and power spectral density of wind observations at the location. Because of the stochastic nature of the unresolved wind speed, the downscaling algorithm may be repeated to yield an ensemble of synthetic wind speeds. The ensemble may be used to generate probabilistic predictions of the sustained wind speed or wind gusts. Verification of the synthetic winds produced by the downscaling algorithm indicates that it can accurately predict various features of the observed wind, such as the probability distribution function of wind speeds, the power spectral density, daily maximum wind gust, and daily maximum sustained wind speed. Thus, the downscaling algorithm may be broadly applicable to any application that requires a computationally efficient, accurate way of generating probabilistic forecasts of wind speed at various time averages or forecast horizons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Point Downscaling of Surface Wind Speed for Forecast Applications

Loading next page...
 
/lp/ams/point-downscaling-of-surface-wind-speed-for-forecast-applications-OqWCCD40cS
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
D.O.I.
10.1175/JAMC-D-17-0144.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA statistical downscaling algorithm is introduced to forecast surface wind speed at a location. The downscaling algorithm consists of resolved and unresolved components to yield a time series of synthetic wind speeds at high time resolution. The resolved component is a bias-corrected numerical weather prediction model forecast of the 10-m wind speed at the location. The unresolved component is a simulated time series of the high-frequency component of the wind speed that is trained to match the variance and power spectral density of wind observations at the location. Because of the stochastic nature of the unresolved wind speed, the downscaling algorithm may be repeated to yield an ensemble of synthetic wind speeds. The ensemble may be used to generate probabilistic predictions of the sustained wind speed or wind gusts. Verification of the synthetic winds produced by the downscaling algorithm indicates that it can accurately predict various features of the observed wind, such as the probability distribution function of wind speeds, the power spectral density, daily maximum wind gust, and daily maximum sustained wind speed. Thus, the downscaling algorithm may be broadly applicable to any application that requires a computationally efficient, accurate way of generating probabilistic forecasts of wind speed at various time averages or forecast horizons.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Mar 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off