Point Downscaling of Surface Wind Speed for Forecast Applications

Point Downscaling of Surface Wind Speed for Forecast Applications AbstractA statistical downscaling algorithm is introduced to forecast surface wind speed at a location. The downscaling algorithm consists of resolved and unresolved components to yield a time series of synthetic wind speeds at high time resolution. The resolved component is a bias-corrected numerical weather prediction model forecast of the 10-m wind speed at the location. The unresolved component is a simulated time series of the high-frequency component of the wind speed that is trained to match the variance and power spectral density of wind observations at the location. Because of the stochastic nature of the unresolved wind speed, the downscaling algorithm may be repeated to yield an ensemble of synthetic wind speeds. The ensemble may be used to generate probabilistic predictions of the sustained wind speed or wind gusts. Verification of the synthetic winds produced by the downscaling algorithm indicates that it can accurately predict various features of the observed wind, such as the probability distribution function of wind speeds, the power spectral density, daily maximum wind gust, and daily maximum sustained wind speed. Thus, the downscaling algorithm may be broadly applicable to any application that requires a computationally efficient, accurate way of generating probabilistic forecasts of wind speed at various time averages or forecast horizons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Point Downscaling of Surface Wind Speed for Forecast Applications

Loading next page...
 
/lp/ams/point-downscaling-of-surface-wind-speed-for-forecast-applications-OqWCCD40cS
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
D.O.I.
10.1175/JAMC-D-17-0144.1
Publisher site
See Article on Publisher Site

Abstract

AbstractA statistical downscaling algorithm is introduced to forecast surface wind speed at a location. The downscaling algorithm consists of resolved and unresolved components to yield a time series of synthetic wind speeds at high time resolution. The resolved component is a bias-corrected numerical weather prediction model forecast of the 10-m wind speed at the location. The unresolved component is a simulated time series of the high-frequency component of the wind speed that is trained to match the variance and power spectral density of wind observations at the location. Because of the stochastic nature of the unresolved wind speed, the downscaling algorithm may be repeated to yield an ensemble of synthetic wind speeds. The ensemble may be used to generate probabilistic predictions of the sustained wind speed or wind gusts. Verification of the synthetic winds produced by the downscaling algorithm indicates that it can accurately predict various features of the observed wind, such as the probability distribution function of wind speeds, the power spectral density, daily maximum wind gust, and daily maximum sustained wind speed. Thus, the downscaling algorithm may be broadly applicable to any application that requires a computationally efficient, accurate way of generating probabilistic forecasts of wind speed at various time averages or forecast horizons.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Mar 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial