Physical Processes Controlling the Tide in the Tropical Lower Atmosphere Investigated Using a Comprehensive Numerical Model

Physical Processes Controlling the Tide in the Tropical Lower Atmosphere Investigated Using a... AbstractThe lower-atmospheric circulation in the tropics is strongly influenced by large-scale daily variations referred to as atmospheric solar tides. Most earlier studies have used simplified linear theory to explain daily variations in the tropics. The present study employs a comprehensive limited-area atmospheric model and revisits some longstanding issues related to atmospheric tidal dynamics. The tides in the tropical lower atmosphere are realistically simulated in the control experiment with a near-global (75°S–75°N) version of the model. Sensitivity experiments with different aspects of the solar heating suppressed showed that the semidiurnal (S2) tide near the surface can be attributed roughly equally to stratospheric and tropospheric direct solar heating and that the diurnal (S1) tide is excited almost entirely by tropospheric direct solar heating as well as solar heating of Earth’s surface. Linear theory with forcing only by direct radiative heating predicts the phase of the S2 barometric oscillation should be ~0910 LT versus the ~0945 LT phase seen in low-latitude observations. The roles of (i) convective and latent heating and (ii) mechanical dissipation, in determining the S2 phase, are assessed in the model. It is found that the former effect delays the phase by ~25 min and the latter by ~5 min; these two effects together explain the observed phase. When the model is run in limited-area domains comparable to those used in typical regional climate studies the S2, but not S1, tide is found to be significantly weaker than observed, even using atmospheric reanalysis data to drive the lateral boundaries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Physical Processes Controlling the Tide in the Tropical Lower Atmosphere Investigated Using a Comprehensive Numerical Model

Loading next page...
 
/lp/ams/physical-processes-controlling-the-tide-in-the-tropical-lower-voq3qHGkTY
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0080.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe lower-atmospheric circulation in the tropics is strongly influenced by large-scale daily variations referred to as atmospheric solar tides. Most earlier studies have used simplified linear theory to explain daily variations in the tropics. The present study employs a comprehensive limited-area atmospheric model and revisits some longstanding issues related to atmospheric tidal dynamics. The tides in the tropical lower atmosphere are realistically simulated in the control experiment with a near-global (75°S–75°N) version of the model. Sensitivity experiments with different aspects of the solar heating suppressed showed that the semidiurnal (S2) tide near the surface can be attributed roughly equally to stratospheric and tropospheric direct solar heating and that the diurnal (S1) tide is excited almost entirely by tropospheric direct solar heating as well as solar heating of Earth’s surface. Linear theory with forcing only by direct radiative heating predicts the phase of the S2 barometric oscillation should be ~0910 LT versus the ~0945 LT phase seen in low-latitude observations. The roles of (i) convective and latent heating and (ii) mechanical dissipation, in determining the S2 phase, are assessed in the model. It is found that the former effect delays the phase by ~25 min and the latter by ~5 min; these two effects together explain the observed phase. When the model is run in limited-area domains comparable to those used in typical regional climate studies the S2, but not S1, tide is found to be significantly weaker than observed, even using atmospheric reanalysis data to drive the lateral boundaries.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Aug 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off