PATH TO NEXRAD: Doppler Radar Development at the National Severe Storms Laboratory

PATH TO NEXRAD: Doppler Radar Development at the National Severe Storms Laboratory In this historical paper, we trace the scientific-and engineering-based steps at the National Severe Storms Laboratory (NSSL) and in the larger weather radar community that led to the development of NSSL's first 10-cm-wavelength pulsed Doppler radar. This radar was the prototype for the current Next Generation Weather Radar (NEXRAD), or Weather Surveillance Radar-1998 Doppler (WSR-88D) network.We track events, both political and scientific, that led to the establishment of NSSL in 1964. The vision of NSSL's first director, Edwin Kessler, is reconstructed through access to historical documents and oral histories. This vision included the development of Doppler radar, where research was to be meshed with the operational needs of the U.S. Weather Bureau and its successorthe National Weather Service.Realization of the vision came through steps that were often fitful, where complications arose due to personnel concerns, and where there were always financial concerns. The historical research indicates that 1) the engineering prowess and mentorship of Roger Lhermitte was at the heart of Doppler radar development at NSSL; 2) key decisions by Kessler in the wake of Lhermitte's sudden departure in 1967 proved crucial to the ultimate success of the project; 3) research results indicated that Doppler velocity signatures of mesocyclones are a precursor of damaging thunderstorms and tornadoes; and 4) results from field testing of the Doppler-derived products during the 1977-79 Joint Doppler Operational Projectespecially the noticeable increase in the verification of tornado warnings and an associated marked decrease in false alarmsled to the government decision to establish the NEXRAD network. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

PATH TO NEXRAD: Doppler Radar Development at the National Severe Storms Laboratory

Loading next page...
 
/lp/ams/path-to-nexrad-doppler-radar-development-at-the-national-severe-storms-0JifToZKEl
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-86-10-1459
Publisher site
See Article on Publisher Site

Abstract

In this historical paper, we trace the scientific-and engineering-based steps at the National Severe Storms Laboratory (NSSL) and in the larger weather radar community that led to the development of NSSL's first 10-cm-wavelength pulsed Doppler radar. This radar was the prototype for the current Next Generation Weather Radar (NEXRAD), or Weather Surveillance Radar-1998 Doppler (WSR-88D) network.We track events, both political and scientific, that led to the establishment of NSSL in 1964. The vision of NSSL's first director, Edwin Kessler, is reconstructed through access to historical documents and oral histories. This vision included the development of Doppler radar, where research was to be meshed with the operational needs of the U.S. Weather Bureau and its successorthe National Weather Service.Realization of the vision came through steps that were often fitful, where complications arose due to personnel concerns, and where there were always financial concerns. The historical research indicates that 1) the engineering prowess and mentorship of Roger Lhermitte was at the heart of Doppler radar development at NSSL; 2) key decisions by Kessler in the wake of Lhermitte's sudden departure in 1967 proved crucial to the ultimate success of the project; 3) research results indicated that Doppler velocity signatures of mesocyclones are a precursor of damaging thunderstorms and tornadoes; and 4) results from field testing of the Doppler-derived products during the 1977-79 Joint Doppler Operational Projectespecially the noticeable increase in the verification of tornado warnings and an associated marked decrease in false alarmsled to the government decision to establish the NEXRAD network.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Oct 12, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off