Partitioning Ice Water Content from Retrievals and Its Application in Model Comparison

Partitioning Ice Water Content from Retrievals and Its Application in Model Comparison AbstractRetrieved bulk microphysics from remote sensing observations is a composite of ice, snow, and graupel in the three-species ice-phase bulk microphysics parameterization. In this study, density thresholds are used to partition the retrieved ice particle size distribution (PSD) into small, median, and large particle size modes from millimeter cloud radar (MMCR) observations in the tropics and global CloudSat and CALIPSO ice cloud property product (2C-ICE) observations. It shows that the small mode can contribute to more than 60% of the total ice water content (IWC) above 12 km (colder than 220 K). Below that, dominant small mode transitions to dominant median mode. The large mode contributes to less than 10%–20% at all height levels. The PSD assumption in retrieval may cause about 10% error in the IWC partition ratio. The lidar-only region in 2C-ICE is dominated by the small mode, while the median mode dominates the radar-only region.For the three-species ice-phase bulk microphysics parameterizations, the cloud ice mass mainly consists of the small mode. But snow and graupel in the models are not equivalent to the median and large modes in the observations, respectively. Therefore, they need to be repartitioned with rebuilt PSDs from the model assumptions using the same partition technique as the observations. The repartitioned IWCs in each mode from different ice species need to be added together and then compared with the corresponding mode from observations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Partitioning Ice Water Content from Retrievals and Its Application in Model Comparison

Loading next page...
 
/lp/ams/partitioning-ice-water-content-from-retrievals-and-its-application-in-g5GC9n9EHd
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-17-0017.1
Publisher site
See Article on Publisher Site

Abstract

AbstractRetrieved bulk microphysics from remote sensing observations is a composite of ice, snow, and graupel in the three-species ice-phase bulk microphysics parameterization. In this study, density thresholds are used to partition the retrieved ice particle size distribution (PSD) into small, median, and large particle size modes from millimeter cloud radar (MMCR) observations in the tropics and global CloudSat and CALIPSO ice cloud property product (2C-ICE) observations. It shows that the small mode can contribute to more than 60% of the total ice water content (IWC) above 12 km (colder than 220 K). Below that, dominant small mode transitions to dominant median mode. The large mode contributes to less than 10%–20% at all height levels. The PSD assumption in retrieval may cause about 10% error in the IWC partition ratio. The lidar-only region in 2C-ICE is dominated by the small mode, while the median mode dominates the radar-only region.For the three-species ice-phase bulk microphysics parameterizations, the cloud ice mass mainly consists of the small mode. But snow and graupel in the models are not equivalent to the median and large modes in the observations, respectively. Therefore, they need to be repartitioned with rebuilt PSDs from the model assumptions using the same partition technique as the observations. The repartitioned IWCs in each mode from different ice species need to be added together and then compared with the corresponding mode from observations.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Apr 18, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off