Orientation Analysis of Simulated Tornadic Debris

Orientation Analysis of Simulated Tornadic Debris AbstractPolarimetric weather radars are capable of detecting tornadic debris signatures (TDSs), which result from debris being lofted to the level of the radar beam and can be modulated by centrifuging and debris fallout. TDSs have been used in promising applications, such as enhanced tornado detection, improved warning and assessment of a potential tornado threat, and estimating tornado damage potential and intensity. Regions with negative differential reflectivity have been found in TDS observations but a physical explanation is yet to be determined. Some hypotheses suggest a common alignment of debris or non-Rayleigh scattering to be the cause. However, because it is inherently difficult and extremely dangerous to verify this, a simulated environment can aid in this context to reveal information that would otherwise be impossible to retrieve in practice. Under the simulation environment, the true construct of the debris is known, wherefrom the bulk distributions of position and orientation data can be extracted for statistical analysis. The primary focus of this work is to investigate the cause of nonzero mean values of in TDSs with simulated data from SimRadar, which is a polarimetric radar time series simulator developed for tornadic debris studies. The 6-degrees-of-freedom (DOF) model shows that for both small and large platelike debris, the debris face tends to have some common degree of alignment normal to the wind direction, which may be a plausible cause for the occurrence of negative in real polarimetric radar observations. Potential explanations for other hypotheses regarding tornado and debris dynamics are also briefly discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Atmospheric and Oceanic Technology American Meteorological Society

Orientation Analysis of Simulated Tornadic Debris

Loading next page...
 
/lp/ams/orientation-analysis-of-simulated-tornadic-debris-O4tV6cxh80
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0426
eISSN
1520-0426
D.O.I.
10.1175/JTECH-D-17-0140.1
Publisher site
See Article on Publisher Site

Abstract

AbstractPolarimetric weather radars are capable of detecting tornadic debris signatures (TDSs), which result from debris being lofted to the level of the radar beam and can be modulated by centrifuging and debris fallout. TDSs have been used in promising applications, such as enhanced tornado detection, improved warning and assessment of a potential tornado threat, and estimating tornado damage potential and intensity. Regions with negative differential reflectivity have been found in TDS observations but a physical explanation is yet to be determined. Some hypotheses suggest a common alignment of debris or non-Rayleigh scattering to be the cause. However, because it is inherently difficult and extremely dangerous to verify this, a simulated environment can aid in this context to reveal information that would otherwise be impossible to retrieve in practice. Under the simulation environment, the true construct of the debris is known, wherefrom the bulk distributions of position and orientation data can be extracted for statistical analysis. The primary focus of this work is to investigate the cause of nonzero mean values of in TDSs with simulated data from SimRadar, which is a polarimetric radar time series simulator developed for tornadic debris studies. The 6-degrees-of-freedom (DOF) model shows that for both small and large platelike debris, the debris face tends to have some common degree of alignment normal to the wind direction, which may be a plausible cause for the occurrence of negative in real polarimetric radar observations. Potential explanations for other hypotheses regarding tornado and debris dynamics are also briefly discussed.

Journal

Journal of Atmospheric and Oceanic TechnologyAmerican Meteorological Society

Published: May 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off