On the use of ocean dynamic temperature for hurricane intensity forecasting

On the use of ocean dynamic temperature for hurricane intensity forecasting AbstractSea surface temperature (SST) and the Tropical Cyclone Heat Potential (TCHP) are metrics used to incorporate the ocean’s influence on hurricane intensification in the National Hurricane Center’s Statistical Hurricane Intensity Prediction Scheme (SHIPS). While both SST and TCHP serve as useful measures of the upper-ocean heat content, they do not accurately represent ocean stratification effects. Here it is shown that replacing SST in the SHIPS framework with a dynamic temperature (Tdy), which accounts for the oceanic negative feedback to the hurricane’s intensity arising from storm-induced vertical mixing and sea-surface cooling, improves the model performance. While the model with SST and TCHP explains about 41% of the variance in 36-hr intensity changes, replacing SST with Tdy increases the variance explained to nearly 44%. These results suggest that representation of the oceanic feedback, even through relatively simple formulations such as Tdy, may improve the performance of statistical hurricane intensity prediction models such as SHIPS. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

On the use of ocean dynamic temperature for hurricane intensity forecasting

Loading next page...
 
/lp/ams/on-the-use-of-ocean-dynamic-temperature-for-hurricane-intensity-rGfu9SxI6Y
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0143.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSea surface temperature (SST) and the Tropical Cyclone Heat Potential (TCHP) are metrics used to incorporate the ocean’s influence on hurricane intensification in the National Hurricane Center’s Statistical Hurricane Intensity Prediction Scheme (SHIPS). While both SST and TCHP serve as useful measures of the upper-ocean heat content, they do not accurately represent ocean stratification effects. Here it is shown that replacing SST in the SHIPS framework with a dynamic temperature (Tdy), which accounts for the oceanic negative feedback to the hurricane’s intensity arising from storm-induced vertical mixing and sea-surface cooling, improves the model performance. While the model with SST and TCHP explains about 41% of the variance in 36-hr intensity changes, replacing SST with Tdy increases the variance explained to nearly 44%. These results suggest that representation of the oceanic feedback, even through relatively simple formulations such as Tdy, may improve the performance of statistical hurricane intensity prediction models such as SHIPS.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Feb 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off