On the Role of NAO-Driven Interannual Variability in Rainfall Seasonality on Water Resources and Hydrologic Design in a Typical Mediterranean Basin

On the Role of NAO-Driven Interannual Variability in Rainfall Seasonality on Water Resources and... AbstractIn the last several decades, extended dry periods have affected the Mediterranean area with dramatic impacts on water resources. Climate models are predicting further warming, with negative effects on water availability. The authors analyze the hydroclimatic tendencies of a typical Mediterranean basin, the Flumendosa basin located in Sardinia, an island in the center of the Mediterranean Sea, where in the last 30 years a sequence of dry periods has seriously impacted the water management system. Interestingly, in the historic record the annual runoff reductions have been more pronounced than the annual precipitation reductions. This paper performs an analysis that links this runoff decrease to changes in the total annual precipitation and its seasonal structure. The seasonality is a key determinant of the surface runoff process, as it reflects the degree to which rainfall is concentrated during the winter. The observed reductions in winter precipitation are shown here to be well correlated (Pearson correlation coefficient of −0.5) with the North Atlantic Oscillation (NAO) index. Considering the predictability of the winter NAO, there is by extension an opportunity to predict future winter precipitation and runoff tendencies. The recent hydroclimatic trends are shown to impact hydrologic design criteria for water resources planning. The authors demonstrate that there is a dangerous increase of the drought severity viewed from the perspective of water resources planning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Hydrometeorology American Meteorological Society

On the Role of NAO-Driven Interannual Variability in Rainfall Seasonality on Water Resources and Hydrologic Design in a Typical Mediterranean Basin

Loading next page...
 
/lp/ams/on-the-role-of-nao-driven-interannual-variability-in-rainfall-XiZ6WYmzQD
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1525-7541
D.O.I.
10.1175/JHM-D-17-0078.1
Publisher site
See Article on Publisher Site

Abstract

AbstractIn the last several decades, extended dry periods have affected the Mediterranean area with dramatic impacts on water resources. Climate models are predicting further warming, with negative effects on water availability. The authors analyze the hydroclimatic tendencies of a typical Mediterranean basin, the Flumendosa basin located in Sardinia, an island in the center of the Mediterranean Sea, where in the last 30 years a sequence of dry periods has seriously impacted the water management system. Interestingly, in the historic record the annual runoff reductions have been more pronounced than the annual precipitation reductions. This paper performs an analysis that links this runoff decrease to changes in the total annual precipitation and its seasonal structure. The seasonality is a key determinant of the surface runoff process, as it reflects the degree to which rainfall is concentrated during the winter. The observed reductions in winter precipitation are shown here to be well correlated (Pearson correlation coefficient of −0.5) with the North Atlantic Oscillation (NAO) index. Considering the predictability of the winter NAO, there is by extension an opportunity to predict future winter precipitation and runoff tendencies. The recent hydroclimatic trends are shown to impact hydrologic design criteria for water resources planning. The authors demonstrate that there is a dangerous increase of the drought severity viewed from the perspective of water resources planning.

Journal

Journal of HydrometeorologyAmerican Meteorological Society

Published: Mar 24, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off