On the Reduced North Atlantic Storminess during the Last Glacial Period: The Role of Topography in Shaping Synoptic Eddies

On the Reduced North Atlantic Storminess during the Last Glacial Period: The Role of Topography... AbstractThe North Atlantic storminess of Last Glacial Maximum (LGM) fully coupled climate simulations is generally less intense than that of their preindustrial (PI) counterparts, despite having stronger baroclinicity. An explanation for this counterintuitive result is presented by comparing two simulations of the IPSL full climate model forced by Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3) LGM and PI conditions. Two additional numerical experiments using a simplified dry general circulation model forced by idealized topography and a relaxation in temperature provide guidance for the dynamical interpretation. The forced experiment with idealized Rockies and an idealized Laurentide Ice Sheet has a less intense North Atlantic storm-track activity than the forced experiment with idealized Rockies only, despite similar baroclinicity. Both the climate and idealized runs satisfy or support the following statements. The reduced storm-track intensity can be explained by a reduced baroclinic conversion, which itself comes from a loss in eddy efficiency to tap the available potential energy as shown by energetic budgets. The eddy heat fluxes are northeastward oriented in the western Atlantic in LGM and are less well aligned with the mean temperature gradient than in PI. The southern slope of the Laurentide Ice Sheet topography forces the eddy geopotential isolines to be zonally oriented at low levels in its proximity. This distorts the tubes of constant eddy geopotential in such a way that they tilt northwestward with height during baroclinic growth in LGM while they are more optimally westward tilted in PI. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

On the Reduced North Atlantic Storminess during the Last Glacial Period: The Role of Topography in Shaping Synoptic Eddies

Loading next page...
 
/lp/ams/on-the-reduced-north-atlantic-storminess-during-the-last-glacial-e70zSuF10r
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0247.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe North Atlantic storminess of Last Glacial Maximum (LGM) fully coupled climate simulations is generally less intense than that of their preindustrial (PI) counterparts, despite having stronger baroclinicity. An explanation for this counterintuitive result is presented by comparing two simulations of the IPSL full climate model forced by Paleoclimate Modelling Intercomparison Project Phase 3 (PMIP3) LGM and PI conditions. Two additional numerical experiments using a simplified dry general circulation model forced by idealized topography and a relaxation in temperature provide guidance for the dynamical interpretation. The forced experiment with idealized Rockies and an idealized Laurentide Ice Sheet has a less intense North Atlantic storm-track activity than the forced experiment with idealized Rockies only, despite similar baroclinicity. Both the climate and idealized runs satisfy or support the following statements. The reduced storm-track intensity can be explained by a reduced baroclinic conversion, which itself comes from a loss in eddy efficiency to tap the available potential energy as shown by energetic budgets. The eddy heat fluxes are northeastward oriented in the western Atlantic in LGM and are less well aligned with the mean temperature gradient than in PI. The southern slope of the Laurentide Ice Sheet topography forces the eddy geopotential isolines to be zonally oriented at low levels in its proximity. This distorts the tubes of constant eddy geopotential in such a way that they tilt northwestward with height during baroclinic growth in LGM while they are more optimally westward tilted in PI.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Feb 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off