Observed Effects of Landscape Variability on Convective Clouds

Observed Effects of Landscape Variability on Convective Clouds Visible and infrared satellite images, in combination with detailed landscape information, suggest an appreciable effect of spatial variations in landscape on cumulus cloud formation over relatively flat terrain. These effects are noticeable when forcing from the atmosphere is weak, e.g., when fronts or other disturbances are absent. A case is presented in which clouds are observed to form first over a mesoscale-size area (100 300 km) of harvested wheat in Oklahoma, where the ground temperature is warmer than adjoining areas dominated by growing vegetation. In addition, clouds are suppressed over relatively long bands downwind of small manmade lakes and areas characterized by heavy tree cover. The observed variability of cloud relative to landscape type is compared with that simulated with a one-dimensional boundary-layer model. Clouds form earliest over regions characterized by high, sensible heat flux, and are suppressed over regions characterized by high, latent heat flux during relatively dry atmospheric conditions. This observation has significance in gaining understanding of the feedback mechanisms of land modification on climate, as well as understanding relatively short-range weather forecasting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Observed Effects of Landscape Variability on Convective Clouds

Loading next page...
 
/lp/ams/observed-effects-of-landscape-variability-on-convective-clouds-HDcbmZSsx6
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1990)071<0272:OEOLVO>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Visible and infrared satellite images, in combination with detailed landscape information, suggest an appreciable effect of spatial variations in landscape on cumulus cloud formation over relatively flat terrain. These effects are noticeable when forcing from the atmosphere is weak, e.g., when fronts or other disturbances are absent. A case is presented in which clouds are observed to form first over a mesoscale-size area (100 300 km) of harvested wheat in Oklahoma, where the ground temperature is warmer than adjoining areas dominated by growing vegetation. In addition, clouds are suppressed over relatively long bands downwind of small manmade lakes and areas characterized by heavy tree cover. The observed variability of cloud relative to landscape type is compared with that simulated with a one-dimensional boundary-layer model. Clouds form earliest over regions characterized by high, sensible heat flux, and are suppressed over regions characterized by high, latent heat flux during relatively dry atmospheric conditions. This observation has significance in gaining understanding of the feedback mechanisms of land modification on climate, as well as understanding relatively short-range weather forecasting.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Mar 1, 1990

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off