Observed Effects of Landscape Variability on Convective Clouds

Observed Effects of Landscape Variability on Convective Clouds Visible and infrared satellite images, in combination with detailed landscape information, suggest an appreciable effect of spatial variations in landscape on cumulus cloud formation over relatively flat terrain. These effects are noticeable when forcing from the atmosphere is weak, e.g., when fronts or other disturbances are absent. A case is presented in which clouds are observed to form first over a mesoscale-size area (100 300 km) of harvested wheat in Oklahoma, where the ground temperature is warmer than adjoining areas dominated by growing vegetation. In addition, clouds are suppressed over relatively long bands downwind of small manmade lakes and areas characterized by heavy tree cover. The observed variability of cloud relative to landscape type is compared with that simulated with a one-dimensional boundary-layer model. Clouds form earliest over regions characterized by high, sensible heat flux, and are suppressed over regions characterized by high, latent heat flux during relatively dry atmospheric conditions. This observation has significance in gaining understanding of the feedback mechanisms of land modification on climate, as well as understanding relatively short-range weather forecasting. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

Observed Effects of Landscape Variability on Convective Clouds

Loading next page...
 
/lp/ams/observed-effects-of-landscape-variability-on-convective-clouds-HDcbmZSsx6
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/1520-0477(1990)071<0272:OEOLVO>2.0.CO;2
Publisher site
See Article on Publisher Site

Abstract

Visible and infrared satellite images, in combination with detailed landscape information, suggest an appreciable effect of spatial variations in landscape on cumulus cloud formation over relatively flat terrain. These effects are noticeable when forcing from the atmosphere is weak, e.g., when fronts or other disturbances are absent. A case is presented in which clouds are observed to form first over a mesoscale-size area (100 300 km) of harvested wheat in Oklahoma, where the ground temperature is warmer than adjoining areas dominated by growing vegetation. In addition, clouds are suppressed over relatively long bands downwind of small manmade lakes and areas characterized by heavy tree cover. The observed variability of cloud relative to landscape type is compared with that simulated with a one-dimensional boundary-layer model. Clouds form earliest over regions characterized by high, sensible heat flux, and are suppressed over regions characterized by high, latent heat flux during relatively dry atmospheric conditions. This observation has significance in gaining understanding of the feedback mechanisms of land modification on climate, as well as understanding relatively short-range weather forecasting.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Mar 1, 1990

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off