Observations of Right-Moving Supercell Motion Forecast Errors

Observations of Right-Moving Supercell Motion Forecast Errors AbstractTwo shear-based supercell motion forecast methods are assessed to understand how each method performs under differing environmental conditions for observed right-moving supercells. Accordingly, a 573-case observational dataset is partitioned into small versus large values of environmental and storm-related variables such as bulk wind shear, convective available potential energy, mean wind, storm motion, and storm-relative helicity (SRH). In addition, hodographs are partitioned based on tornado damage scale, as well as where the storm motion falls among the four quadrants.With respect to the 573-case dataset, the largest supercell motion forecast errors generally occur when the (i) observed midlevel (4–5 km AGL) storm-relative winds are either anomalously weak or strong, (ii) observed 0–3-km AGL SRH is large, (iii) supercell motion is fast, (iv) convective inhibition is strong, or (v) the surface–500-mb RH is low. Moreover, significantly tornadic supercells are biased 1.2 m s−1 slower and farther right of the hodograph than predicted by the Bunkers forecast method, but show very small bias for the modified Rasmussen-Blanchard method (though errors are a little larger for this method). Conversely, the smallest errors occur when, relative to the overall sample, the (i) observed upper-level (9–10 km AGL) storm-relative winds are strong, (ii) supercell motion is slow or the mean wind is weak, (iii) surface–500-mb RH is high, or (iv) convective inhibition is weak. Errors also are relatively small when storm motion lies in the lower-left hodograph quadrant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Weather and Forecasting American Meteorological Society

Observations of Right-Moving Supercell Motion Forecast Errors

Weather and Forecasting , Volume preprint (2017): 1 – Nov 22, 2017

Loading next page...
 
/lp/ams/observations-of-right-moving-supercell-motion-forecast-errors-Htm0YRqu2F
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0434
D.O.I.
10.1175/WAF-D-17-0133.1
Publisher site
See Article on Publisher Site

Abstract

AbstractTwo shear-based supercell motion forecast methods are assessed to understand how each method performs under differing environmental conditions for observed right-moving supercells. Accordingly, a 573-case observational dataset is partitioned into small versus large values of environmental and storm-related variables such as bulk wind shear, convective available potential energy, mean wind, storm motion, and storm-relative helicity (SRH). In addition, hodographs are partitioned based on tornado damage scale, as well as where the storm motion falls among the four quadrants.With respect to the 573-case dataset, the largest supercell motion forecast errors generally occur when the (i) observed midlevel (4–5 km AGL) storm-relative winds are either anomalously weak or strong, (ii) observed 0–3-km AGL SRH is large, (iii) supercell motion is fast, (iv) convective inhibition is strong, or (v) the surface–500-mb RH is low. Moreover, significantly tornadic supercells are biased 1.2 m s−1 slower and farther right of the hodograph than predicted by the Bunkers forecast method, but show very small bias for the modified Rasmussen-Blanchard method (though errors are a little larger for this method). Conversely, the smallest errors occur when, relative to the overall sample, the (i) observed upper-level (9–10 km AGL) storm-relative winds are strong, (ii) supercell motion is slow or the mean wind is weak, (iii) surface–500-mb RH is high, or (iv) convective inhibition is weak. Errors also are relatively small when storm motion lies in the lower-left hodograph quadrant.

Journal

Weather and ForecastingAmerican Meteorological Society

Published: Nov 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial