Numerical Study of Physical Processes Controlling Summer Precipitation over the Western Ghats Region

Numerical Study of Physical Processes Controlling Summer Precipitation over the Western Ghats Region AbstractSummer precipitation over the Western Ghats and its adjacent Arabian Sea is an important component of the Indian monsoon. To advance understanding of the physical processes controlling this regional precipitation, a series of high-resolution convection-permitting simulations were conducted using the Weather Research and Forecasting (WRF) Model. Convection simulated in the WRF Model agrees with TRMM and MODIS satellite estimates. Sensitivity simulations are conducted, by altering topography, latent heating, and sea surface temperature (SST), to quantify the effects of different physical forcing factors. It is helpful to put India’s west coast rainfall systems into three categories with different causes and characteristics. 1) Offshore rainfall is controlled by incoming convective available potential energy (CAPE), the entrainment of midtropospheric dry layer in the monsoon westerlies, and the latent heat flux and SST of the Arabian Sea. It is not triggered by the Western Ghats. When offshore convection is present, it reduces both CAPE and the downwind coastal rainfall. Strong (weak) offshore rainfall is associated with high (low) SSTs in the Arabian Sea, suggested by both observations and sensitivity simulations. 2) Coastal convective rainfall is forced by the coastline roughness, diurnal heating, and the Western Ghats topography. This localized convective rainfall ends abruptly beyond the Western Ghats, producing a rain shadow to the east of the mountains. This deep convection with mixed phase microphysics is the biggest overall rain producer. 3) Orographic stratiform warm rain and drizzle dominate the local precipitation on the crest of the Western Ghats. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Climate American Meteorological Society

Numerical Study of Physical Processes Controlling Summer Precipitation over the Western Ghats Region

Loading next page...
 
/lp/ams/numerical-study-of-physical-processes-controlling-summer-precipitation-BwKoOSzZ0t
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0442
D.O.I.
10.1175/JCLI-D-17-0002.1
Publisher site
See Article on Publisher Site

Abstract

AbstractSummer precipitation over the Western Ghats and its adjacent Arabian Sea is an important component of the Indian monsoon. To advance understanding of the physical processes controlling this regional precipitation, a series of high-resolution convection-permitting simulations were conducted using the Weather Research and Forecasting (WRF) Model. Convection simulated in the WRF Model agrees with TRMM and MODIS satellite estimates. Sensitivity simulations are conducted, by altering topography, latent heating, and sea surface temperature (SST), to quantify the effects of different physical forcing factors. It is helpful to put India’s west coast rainfall systems into three categories with different causes and characteristics. 1) Offshore rainfall is controlled by incoming convective available potential energy (CAPE), the entrainment of midtropospheric dry layer in the monsoon westerlies, and the latent heat flux and SST of the Arabian Sea. It is not triggered by the Western Ghats. When offshore convection is present, it reduces both CAPE and the downwind coastal rainfall. Strong (weak) offshore rainfall is associated with high (low) SSTs in the Arabian Sea, suggested by both observations and sensitivity simulations. 2) Coastal convective rainfall is forced by the coastline roughness, diurnal heating, and the Western Ghats topography. This localized convective rainfall ends abruptly beyond the Western Ghats, producing a rain shadow to the east of the mountains. This deep convection with mixed phase microphysics is the biggest overall rain producer. 3) Orographic stratiform warm rain and drizzle dominate the local precipitation on the crest of the Western Ghats.

Journal

Journal of ClimateAmerican Meteorological Society

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off