Normalized Convective Characteristics of Tropical Cyclone Rapid Intensification Events in the North Atlantic and Eastern North Pacific

Normalized Convective Characteristics of Tropical Cyclone Rapid Intensification Events in the... AbstractThe relationship between tropical cyclone (TC) convective characteristics and TC intensity change is explored using infrared and passive microwave satellite imagery of TCs in the North Atlantic and eastern North Pacific basins from 1989 to 2016. TC intensity change episodes were placed into one of four groups: rapid intensification (RI), slow intensification (SI), neutral (N), and weakening (W). To account for differences in the distributions of TC intensity among the intensity change groups, a normalization technique is introduced, which allows for the analysis of anomalous TC convective characteristics and their relationship to TC intensity change.A composite analysis of normalized convective parameters shows anomalously cold infrared and 85-GHz brightness temperatures, as well as anomalously warm 37-GHz brightness temperatures, in the upshear quadrants of the TC are associated with increased rates of TC intensification, including RI. For RI episodes in the North Atlantic basin, an increase in anomalous liquid hydrometeor content precedes anomalous ice hydrometeor content by approximately 12 h, suggesting convection deep enough to produce robust ice scattering is a symptom of, rather than a precursor to, RI. In the eastern North Pacific basin, the amount of anomalous liquid and ice hydrometeors increases in tandem near the onset of RI.Normalized infrared and passive microwave brightness temperatures can be utilized to skillfully predict episodes of RI, as the forecast skill of RI episodes using solely normalized convective parameters is comparable to the forecast skill of RI episodes by current operational statistical models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Normalized Convective Characteristics of Tropical Cyclone Rapid Intensification Events in the North Atlantic and Eastern North Pacific

Loading next page...
 
/lp/ams/normalized-convective-characteristics-of-tropical-cyclone-rapid-vACi7L26fv
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0239.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe relationship between tropical cyclone (TC) convective characteristics and TC intensity change is explored using infrared and passive microwave satellite imagery of TCs in the North Atlantic and eastern North Pacific basins from 1989 to 2016. TC intensity change episodes were placed into one of four groups: rapid intensification (RI), slow intensification (SI), neutral (N), and weakening (W). To account for differences in the distributions of TC intensity among the intensity change groups, a normalization technique is introduced, which allows for the analysis of anomalous TC convective characteristics and their relationship to TC intensity change.A composite analysis of normalized convective parameters shows anomalously cold infrared and 85-GHz brightness temperatures, as well as anomalously warm 37-GHz brightness temperatures, in the upshear quadrants of the TC are associated with increased rates of TC intensification, including RI. For RI episodes in the North Atlantic basin, an increase in anomalous liquid hydrometeor content precedes anomalous ice hydrometeor content by approximately 12 h, suggesting convection deep enough to produce robust ice scattering is a symptom of, rather than a precursor to, RI. In the eastern North Pacific basin, the amount of anomalous liquid and ice hydrometeors increases in tandem near the onset of RI.Normalized infrared and passive microwave brightness temperatures can be utilized to skillfully predict episodes of RI, as the forecast skill of RI episodes using solely normalized convective parameters is comparable to the forecast skill of RI episodes by current operational statistical models.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Apr 18, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off