Nonlinear Least Squares En4DVar to 4DEnVar Methods for Data Assimilation: Formulation, Analysis and Preliminary Evaluation

Nonlinear Least Squares En4DVar to 4DEnVar Methods for Data Assimilation: Formulation, Analysis... AbstractThe En4DVar method is designed to combine the flow-dependent statistical covariance information of EnKF into the traditional 4DVar method. However, the En4DVar method is still hampered by its strong dependence on the adjoint model of the underlying forecast model and by its complexity, maintenance and high cost in computer implementation and simulation. The primary goal of this paper is to propose an alternative approach to overcome the main difficulty of the En4DVar method caused by the use of adjoint models. The proposed approach, named as the NLS-En4DVar (Nonlinear Least Squares En4DVar) method, begins with rewriting the standard En4DVar formulation into a nonlinear least squares problem, which is followed by solving the resulting NLS problem by a Gauss-Newton iterative method. To reduce the computational and implementation complexity of the proposed NLS-En4DVar method, we then propose a few variants of the new method, which are cheaper and easier to use than the full NLS-En4DVar method at the expense of reduced accuracy. Furthermore, we also propose an improved iterative method based on the comprehensive analysis on the above NLSi-En4DVar family of methods. These proposed NLSi-En4DVar methods provide more flexible choices of computational capabilities for the broader and more realistic data assimilation problems arising from various applications. The pros and cons of the proposed NLSi-En4DVar family of methods are further examined in the paper and their relationships and performance are also evaluated by several sets of numerical experiments based on the Lorenz-96 and Advanced Research WRF (ARW) models, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

Nonlinear Least Squares En4DVar to 4DEnVar Methods for Data Assimilation: Formulation, Analysis and Preliminary Evaluation

Loading next page...
 
/lp/ams/nonlinear-least-squares-en4dvar-to-4denvar-methods-for-data-FHSQZxVFT2
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
D.O.I.
10.1175/MWR-D-17-0050.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe En4DVar method is designed to combine the flow-dependent statistical covariance information of EnKF into the traditional 4DVar method. However, the En4DVar method is still hampered by its strong dependence on the adjoint model of the underlying forecast model and by its complexity, maintenance and high cost in computer implementation and simulation. The primary goal of this paper is to propose an alternative approach to overcome the main difficulty of the En4DVar method caused by the use of adjoint models. The proposed approach, named as the NLS-En4DVar (Nonlinear Least Squares En4DVar) method, begins with rewriting the standard En4DVar formulation into a nonlinear least squares problem, which is followed by solving the resulting NLS problem by a Gauss-Newton iterative method. To reduce the computational and implementation complexity of the proposed NLS-En4DVar method, we then propose a few variants of the new method, which are cheaper and easier to use than the full NLS-En4DVar method at the expense of reduced accuracy. Furthermore, we also propose an improved iterative method based on the comprehensive analysis on the above NLSi-En4DVar family of methods. These proposed NLSi-En4DVar methods provide more flexible choices of computational capabilities for the broader and more realistic data assimilation problems arising from various applications. The pros and cons of the proposed NLSi-En4DVar family of methods are further examined in the paper and their relationships and performance are also evaluated by several sets of numerical experiments based on the Lorenz-96 and Advanced Research WRF (ARW) models, respectively.

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Oct 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial