New Mexico Scintillometer Network: Supporting Remote Sensing and Hydrologic and Meteorological Models

New Mexico Scintillometer Network: Supporting Remote Sensing and Hydrologic and Meteorological... In New Mexico, a first-of-its-kind network of seven large aperture scintillometer (LAS) sites was established in 2006 to measure sensible heat fluxes over irrigated fields, riparian areas, deserts, lava flows, and mountain highlands. Wireless networking infrastructure and auxiliary meteorological measurements facilitate real-time data assimilation. LAS measurements are advantageous in that they vastly exceed the footprint size of commonly used ground measurements of sensible and latent heat fluxes (~100 m2), matching the pixel size of satellite images or grid cells of hydrologic and meteorological models (~0.15 km2). Consequently, the LAS measurements can be used to validate, calibrate, and force hydrologic, remote sensing, and weather forecast models. Initial results are presented for 1) variability and error of sensible heat flux measurements by scintillometers over heterogeneous terrain and 2) the validation of the Surface Energy Balance Algorithm for Land (SEBAL) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. Findings from this study are discussed in the context of researchers' and practitioners' data assimilation needs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

New Mexico Scintillometer Network: Supporting Remote Sensing and Hydrologic and Meteorological Models

Loading next page...
 
/lp/ams/new-mexico-scintillometer-network-supporting-remote-sensing-and-B22ouJCxJL
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/2008BAMS2480.1
Publisher site
See Article on Publisher Site

Abstract

In New Mexico, a first-of-its-kind network of seven large aperture scintillometer (LAS) sites was established in 2006 to measure sensible heat fluxes over irrigated fields, riparian areas, deserts, lava flows, and mountain highlands. Wireless networking infrastructure and auxiliary meteorological measurements facilitate real-time data assimilation. LAS measurements are advantageous in that they vastly exceed the footprint size of commonly used ground measurements of sensible and latent heat fluxes (~100 m2), matching the pixel size of satellite images or grid cells of hydrologic and meteorological models (~0.15 km2). Consequently, the LAS measurements can be used to validate, calibrate, and force hydrologic, remote sensing, and weather forecast models. Initial results are presented for 1) variability and error of sensible heat flux measurements by scintillometers over heterogeneous terrain and 2) the validation of the Surface Energy Balance Algorithm for Land (SEBAL) applied to Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. Findings from this study are discussed in the context of researchers' and practitioners' data assimilation needs.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Feb 27, 2009

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial