‘Near-ground’ vertical vorticity in supercell thunderstorm models

‘Near-ground’ vertical vorticity in supercell thunderstorm models AbstractNumerical models of supercell thunderstorms produce near-ground rotation about a vertical axis (i.e., vertical vorticity) after the development of raincooled outflows and downdrafts. The physical processes involved in the production of near-ground vertical vorticity in simulated supercells have been a subject of discussion in the literature for over thirty years. One cause for this lengthy discussion is the difficulty in applying the principles of inviscid vorticity dynamics in a continuous fluid to the viscous evolution of discrete Eulerian simulations. The present paper reports on a Lagrangian analysis of near-ground vorticity from an idealized supercell simulation with enhanced vertical resolution near the lower surface. The parcel that enters the low-level maximum of vertical vorticity has a history of descent during which its horizontal vorticity is considerably enhanced. In its final approach to this region, the parcel’s enhanced horizontal vorticity is tilted to produce vertical vorticity which is then amplified through vertical stretching as the parcel rises. A simplified theoretical model is developed that exhibits these same features. The principal conclusion is that vertical vorticity at the parcel’s nadir (its lowest point), although helpful, does not need to be positive for rapid near-surface amplification of vertical vorticity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

‘Near-ground’ vertical vorticity in supercell thunderstorm models

Loading next page...
 
/lp/ams/near-ground-vertical-vorticity-in-supercell-thunderstorm-models-yz3sTRHLzT
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
eISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0288.1
Publisher site
See Article on Publisher Site

Abstract

AbstractNumerical models of supercell thunderstorms produce near-ground rotation about a vertical axis (i.e., vertical vorticity) after the development of raincooled outflows and downdrafts. The physical processes involved in the production of near-ground vertical vorticity in simulated supercells have been a subject of discussion in the literature for over thirty years. One cause for this lengthy discussion is the difficulty in applying the principles of inviscid vorticity dynamics in a continuous fluid to the viscous evolution of discrete Eulerian simulations. The present paper reports on a Lagrangian analysis of near-ground vorticity from an idealized supercell simulation with enhanced vertical resolution near the lower surface. The parcel that enters the low-level maximum of vertical vorticity has a history of descent during which its horizontal vorticity is considerably enhanced. In its final approach to this region, the parcel’s enhanced horizontal vorticity is tilted to produce vertical vorticity which is then amplified through vertical stretching as the parcel rises. A simplified theoretical model is developed that exhibits these same features. The principal conclusion is that vertical vorticity at the parcel’s nadir (its lowest point), although helpful, does not need to be positive for rapid near-surface amplification of vertical vorticity.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Mar 17, 2017

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial