NCAR/CU Surface, Soil, and Vegetation Observations during the International H2O Project 2002 Field Campaign

NCAR/CU Surface, Soil, and Vegetation Observations during the International H2O Project 2002... The MayJune 2002 International H2O Project was held in the U.S. Southern Great Plains to determine ways that moisture data could be collected and utilized in numerical forecast models most effectively. We describe the surface and boundary layer components, and indicate how the data can be acquired. These data document the eddy transport of heat and water vapor from the surface to the atmosphere (in terms of sensible heat flux H and latent heat flux LE), as well as radiative, atmospheric, soil, and vegetative factors that affect it, so that the moisture and heat supply to the atmosphere can be related to surface properties both for observational studies and tests of land surface models. The surface dataset was collected at 10 surface flux towers at locations representing the major types of land cover and extending from southeast Kansas to the Oklahoma Panhandle. At each location, the components of the surface energy budget (H, LE, net radiation, and soil heat flux) are documented each half-hour, along with the weather (wind, temperature, mixing ratio, air pressure, and precipitation), soil temperature, moisture, and matric potential down to 7090 cm beneath the surface at 9 of the 10 sites. Observations of soil and vegetation properties and their horizontal changes were taken near all 10 towers during periodic visits. Aircraft measurements of H and LE from repeated low-level flight tracks along three tracks collocated with the surface sites extend the flux tower measurements horizontally. We illustrate the effects of vegetation and soil moisture on the H and LE and their horizontal variability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the American Meteorological Society American Meteorological Society

NCAR/CU Surface, Soil, and Vegetation Observations during the International H2O Project 2002 Field Campaign

Loading next page...
 
/lp/ams/ncar-cu-surface-soil-and-vegetation-observations-during-the-5JAFgNrrgB
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0477
D.O.I.
10.1175/BAMS-88-1-65
Publisher site
See Article on Publisher Site

Abstract

The MayJune 2002 International H2O Project was held in the U.S. Southern Great Plains to determine ways that moisture data could be collected and utilized in numerical forecast models most effectively. We describe the surface and boundary layer components, and indicate how the data can be acquired. These data document the eddy transport of heat and water vapor from the surface to the atmosphere (in terms of sensible heat flux H and latent heat flux LE), as well as radiative, atmospheric, soil, and vegetative factors that affect it, so that the moisture and heat supply to the atmosphere can be related to surface properties both for observational studies and tests of land surface models. The surface dataset was collected at 10 surface flux towers at locations representing the major types of land cover and extending from southeast Kansas to the Oklahoma Panhandle. At each location, the components of the surface energy budget (H, LE, net radiation, and soil heat flux) are documented each half-hour, along with the weather (wind, temperature, mixing ratio, air pressure, and precipitation), soil temperature, moisture, and matric potential down to 7090 cm beneath the surface at 9 of the 10 sites. Observations of soil and vegetation properties and their horizontal changes were taken near all 10 towers during periodic visits. Aircraft measurements of H and LE from repeated low-level flight tracks along three tracks collocated with the surface sites extend the flux tower measurements horizontally. We illustrate the effects of vegetation and soil moisture on the H and LE and their horizontal variability.

Journal

Bulletin of the American Meteorological SocietyAmerican Meteorological Society

Published: Jan 11, 2007

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial