Multiscale Dynamical Processes Underlying the Wintertime Atlantic Blockings

Multiscale Dynamical Processes Underlying the Wintertime Atlantic Blockings AbstractThe wintertime atmospheric blocking over the Atlantic is investigated using a newly developed methodology—namely, localized multiscale energy and vorticity analysis (MS-EVA)—and the theory of canonical energy transfer. Through a multiscale window transform (MWT), the atmospheric fields from the ERA-40 data are reconstructed on three-scale ranges or scale windows: basic-flow window, blocking window, and synoptic window. The blocking event is obtained by compositing the wintertime blocking episodes, and a clear westward-retrograding signal is identified on the blocking window. Likewise, the local multiscale energetics following the signal are composited. It is found that a life cycle of the blocking-scale kinetic energy (KE) may be divided into three phases: onset phase, amplification phase, and decay phase. Different phases have different mechanisms in play. In general, pressure work and the canonical transfer from the synoptic eddies initiate the generation of the blocking, while the latter contributes to its amplification. The blocking decays as the system transports the KE away and as it converts the KE into available potential energy (APE) through buoyancy conversion. For the APE on the blocking window, its evolution experiences two maxima and, correspondingly, two phases can be distinguished. In the first maximum phase, the dominating mechanism is baroclinic instability; in the second, buoyancy conversion takes place. These are also the mechanisms that cause the warm core of the blocking in the troposphere. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Atmospheric Sciences American Meteorological Society

Multiscale Dynamical Processes Underlying the Wintertime Atlantic Blockings

Loading next page...
 
/lp/ams/multiscale-dynamical-processes-underlying-the-wintertime-atlantic-gXmH4Z5gJT
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0469
D.O.I.
10.1175/JAS-D-16-0295.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe wintertime atmospheric blocking over the Atlantic is investigated using a newly developed methodology—namely, localized multiscale energy and vorticity analysis (MS-EVA)—and the theory of canonical energy transfer. Through a multiscale window transform (MWT), the atmospheric fields from the ERA-40 data are reconstructed on three-scale ranges or scale windows: basic-flow window, blocking window, and synoptic window. The blocking event is obtained by compositing the wintertime blocking episodes, and a clear westward-retrograding signal is identified on the blocking window. Likewise, the local multiscale energetics following the signal are composited. It is found that a life cycle of the blocking-scale kinetic energy (KE) may be divided into three phases: onset phase, amplification phase, and decay phase. Different phases have different mechanisms in play. In general, pressure work and the canonical transfer from the synoptic eddies initiate the generation of the blocking, while the latter contributes to its amplification. The blocking decays as the system transports the KE away and as it converts the KE into available potential energy (APE) through buoyancy conversion. For the APE on the blocking window, its evolution experiences two maxima and, correspondingly, two phases can be distinguished. In the first maximum phase, the dominating mechanism is baroclinic instability; in the second, buoyancy conversion takes place. These are also the mechanisms that cause the warm core of the blocking in the troposphere.

Journal

Journal of the Atmospheric SciencesAmerican Meteorological Society

Published: Nov 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off