Multichannel Empirical Orthogonal Teleconnection Analysis: A Method for Space–Time Decomposition of Climate Variability

Multichannel Empirical Orthogonal Teleconnection Analysis: A Method for Space–Time... AbstractWith the increasing availability of Earth observation datasets, developing methods for the identification of modes of variability is becoming crucial in Earth system science. These modes, also referred as teleconnections, are useful to understand the global climate system and to predict short-term climate and climate variability. For example, the El Niño–Southern Oscillation (ENSO) phenomenon, a teleconnection with global climate impacts, has been associated with major social, economic, and ecological consequences. In this study, a novel procedure called multichannel empirical orthogonal teleconnection (MEOT) analysis is introduced as a simple extension of the logic of empirical orthogonal teleconnections to uncover the temporal evolution of recurrent space–time patterns. A global monthly sea surface temperature dataset (1982–2007 time series) is used to explore the MEOT method and its differences and similarities with the multichannel singular spectrum analysis (MSSA). Both methods are applied with a 13-month embedding dimension to extract spatiotemporal patterns that exhibit clear basis vectors in quadrature. MSSA extracted four quadratures, and MEOT extracted three. Findings show that MEOT quadratures are more easily related to climate events corresponding to ENSO, South Atlantic Ocean dipole, and Atlantic meridional mode. MSSA identified one quadrature related to ENSO and one related to the quasi-biennial oscillation. The two remaining MSSA quadratures are mixtures of different indices rather than one climate event. Thus, results indicate that, since it does not suffer from a biorthogonality constraint, MEOT is effective at extracting modes of variability in climate datasets, suggesting its potential use in climate research. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Meteorology and Climatology American Meteorological Society

Multichannel Empirical Orthogonal Teleconnection Analysis: A Method for Space–Time Decomposition of Climate Variability

Loading next page...
 
/lp/ams/multichannel-empirical-orthogonal-teleconnection-analysis-a-method-for-Bff0oHNlLm
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1558-8432
eISSN
1558-8432
D.O.I.
10.1175/JAMC-D-16-0072.1
Publisher site
See Article on Publisher Site

Abstract

AbstractWith the increasing availability of Earth observation datasets, developing methods for the identification of modes of variability is becoming crucial in Earth system science. These modes, also referred as teleconnections, are useful to understand the global climate system and to predict short-term climate and climate variability. For example, the El Niño–Southern Oscillation (ENSO) phenomenon, a teleconnection with global climate impacts, has been associated with major social, economic, and ecological consequences. In this study, a novel procedure called multichannel empirical orthogonal teleconnection (MEOT) analysis is introduced as a simple extension of the logic of empirical orthogonal teleconnections to uncover the temporal evolution of recurrent space–time patterns. A global monthly sea surface temperature dataset (1982–2007 time series) is used to explore the MEOT method and its differences and similarities with the multichannel singular spectrum analysis (MSSA). Both methods are applied with a 13-month embedding dimension to extract spatiotemporal patterns that exhibit clear basis vectors in quadrature. MSSA extracted four quadratures, and MEOT extracted three. Findings show that MEOT quadratures are more easily related to climate events corresponding to ENSO, South Atlantic Ocean dipole, and Atlantic meridional mode. MSSA identified one quadrature related to ENSO and one related to the quasi-biennial oscillation. The two remaining MSSA quadratures are mixtures of different indices rather than one climate event. Thus, results indicate that, since it does not suffer from a biorthogonality constraint, MEOT is effective at extracting modes of variability in climate datasets, suggesting its potential use in climate research.

Journal

Journal of Applied Meteorology and ClimatologyAmerican Meteorological Society

Published: Jul 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial