More on the Scale Dependence of the Predictability of Precipitation Patterns: Extension to the 2009–13 CAPS Spring Experiment Ensemble Forecasts

More on the Scale Dependence of the Predictability of Precipitation Patterns: Extension to the... AbstractThis paper analyzes the scale and case dependence of the predictability of precipitation in the Storm-Scale Ensemble Forecast (SSEF) system run by the Center for Analysis and Prediction of Storms (CAPS) during the NOAA Hazardous Weather Testbed Spring Experiments of 2008–13. The effect of different types of ensemble perturbation methodologies is quantified as a function of spatial scale. It is found that uncertainties in the large-scale initial and boundary conditions and in the model microphysical parameterization scheme can result in the loss of predictability at scales smaller than 200 km after 24 h. Also, these uncertainties account for most of the forecast error. Other types of ensemble perturbation methodologies were not found to be as important for the quantitative precipitation forecasts (QPFs). The case dependences of predictability and of the sensitivity to the ensemble perturbation methodology were also analyzed. Events were characterized in terms of the extent of the precipitation coverage and of the convective-adjustment time scale , an indicator of whether convection is in equilibrium with the large-scale forcing. It was found that events characterized by widespread precipitation and small values (representative of quasi-equilibrium convection) were usually more predictable than nonequilibrium cases. No significant statistical relationship was found between the relative role of different perturbation methodologies and precipitation coverage or . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Monthly Weather Review American Meteorological Society

More on the Scale Dependence of the Predictability of Precipitation Patterns: Extension to the 2009–13 CAPS Spring Experiment Ensemble Forecasts

Loading next page...
 
/lp/ams/more-on-the-scale-dependence-of-the-predictability-of-precipitation-ZXvCrIO6Li
Publisher
American Meteorological Society
Copyright
Copyright © American Meteorological Society
ISSN
1520-0493
eISSN
1520-0493
D.O.I.
10.1175/MWR-D-16-0362.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThis paper analyzes the scale and case dependence of the predictability of precipitation in the Storm-Scale Ensemble Forecast (SSEF) system run by the Center for Analysis and Prediction of Storms (CAPS) during the NOAA Hazardous Weather Testbed Spring Experiments of 2008–13. The effect of different types of ensemble perturbation methodologies is quantified as a function of spatial scale. It is found that uncertainties in the large-scale initial and boundary conditions and in the model microphysical parameterization scheme can result in the loss of predictability at scales smaller than 200 km after 24 h. Also, these uncertainties account for most of the forecast error. Other types of ensemble perturbation methodologies were not found to be as important for the quantitative precipitation forecasts (QPFs). The case dependences of predictability and of the sensitivity to the ensemble perturbation methodology were also analyzed. Events were characterized in terms of the extent of the precipitation coverage and of the convective-adjustment time scale , an indicator of whether convection is in equilibrium with the large-scale forcing. It was found that events characterized by widespread precipitation and small values (representative of quasi-equilibrium convection) were usually more predictable than nonequilibrium cases. No significant statistical relationship was found between the relative role of different perturbation methodologies and precipitation coverage or .

Journal

Monthly Weather ReviewAmerican Meteorological Society

Published: Sep 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off